Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks

Sina Montazeri⁽¹⁾, Xiao Xiang Zhu^(1,2), Michael Eineder^(1,2), Ramon F. Hanssen⁽³⁾, Richard Bamler^(1,2)

(1) German Aerospace Center (DLR)(2) Technical University of Munich (TUM)(3) Delft University of Technology (TU Delft)

Knowledge for Tomorrow

TomoSAR Urban Imaging

- Multi-baseline InSAR approach
- Layover separation capability
- Up to 10⁶ points/km² achievable with meter-resolution SAR data
- Non-linear and multi-component motion (e.g. linear subsidence and thermal seasonal deformation) can be accounted for → LOS deformation

Mean intensity map

Single and double scatterers map

Source: Zhu, 2011

InSAR LOS Deformation

• InSAR provides deformation estimates projected onto the LOS of the satellite (One-dimensional deformation)

$$d_{LOS} = d_u \cos(\theta_{inc}) - d_e \cos(\alpha_h) \sin(\theta_{inc}) + d_n \sin(\alpha_h) \sin(\theta_{inc})$$

d_{LOS}	LOS deformation
d_u	Motion component in vertical direction
d_e	Motion component in east-west direction
d_n	Motion component in north-south direction
θ_{inc}	Local incidence angle of satellite beam
α_h	Azimuth angle of the satellite

LOS deformation estimates from, at least, three geometries \rightarrow Retreival of d_u , d_e , d_n

InSAR LOS Deformation

• Considering near-polar orbits of TerraSAR-X, for instance:

- Heading angle ($\alpha_h = 190.6^\circ$)
- Incidence angle ($\theta_{inc} = 36.1^{\circ}$)

$$[0.8 \ 0.58 - 0.1] [d_u d_e d_n]^T$$

• Should not lead to ignorance of d_n in the functional model of 3D motion retrieval

timated
$$d_e = d_n \cdot \tan(\alpha_h) \approx 18 \% d_n$$

Bias in estimated $d_e \leftarrow$

Why motion decomposition?

Tomographic data available from **one** viewing geometry:

- One-dimensional LOS deformation
- No information on the shadowed part

Tomographic data available from **Multiple** viewing geometries:

- Decomposed horizontal and vertical motion
- Shadow-free deformation monitoring
- Higher number of scatterers on each building

Workflow

- Required data: Stacks available from cross-heading tracks
- TomoSAR processing of each SAR image stack and geocoding
- Geodetic point cloud fusion
- Motion decomposition from the available LOS measurements

Tomo-GENESIS Processing System

New features:

- SL1MMER for SR
- Time Warp method
- Integrated solution
- Point clouds fusion

PSI-GENESIS: Adam et.al 2005

Tomo-GENESIS: Zhu et.al 2013

Point Cloud Fusion

• TomoSAR point clouds from different acquisition geometries cannot be directly merged:

- Unknown height of the reference point in each stack
- Available geometrical fusion algorithms
 - Least squares identical point matching (Gernhardt et.al, 2012)
 - Feature-based building end-point matching (Wang and Zhu, 2014)

How about geodetic point cloud fusion?

Geodetic Point Cloud Fusion

• Based on an **absolutely localized identical reference point** for all the TomoSAR stacks

Motion Decomposition

$$d_{LOS} = d_u \cos(\theta_{inc}) - d_e \cos(\alpha_h) \sin(\theta_{inc}) + d_n \sin(\alpha_h) \sin(\theta_{inc})$$

Number of points inside the cube
Unknown vector consist of (d_u , d_e , d_n)
Observation vector consist of TomoSAR LOS deformations
Design matrix based on ($ heta_{inc}$, $lpha_h$)
Weight matrix proportional to inversed squared distances
Vector of residuals
Vector consists of diagonal elements of ${f W}$

Why L1 Norm Instead of L2?

• L2 norm minimization (Least squares):

$$\mathbf{v}^{\mathrm{T}} \mathbf{W} \mathbf{v} = \sum_{i=1}^{m} v_i \mathbf{W}_{i,i} v_i^{\mathrm{T}} \to \min$$

• L1 norm minimization

$$\mathbf{w}^{T}|\mathbf{v}| = \sum_{i=1}^{m} w_{i} |v_{i}| \rightarrow \min$$
 Robust against outliers

DLR.de • Chart 12 > Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks > Sina Montazeri et.al • FRINGE workshop, 25.03.2015

Experimental Results

Dataset and Test Area

- Central area of Berlin, Germany
- Four stacks of TerraSAR-X VHR spotlight images (300MHz)
- Period: March 2008 to March 2013

Scene coverage

SAR data

Beam	Incidence angle	Heading angle	Track type	Nr. of Images
57	41.9°	350.3°	Ascending	102
85	51.1°	352°	Ascending	111
42	36.1°	190.6°	Descending	109
99	54.7°	187.2°	Descending	138

DLR.de • Chart 14 > Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks > Sina Montazeri et.al • FRINGE workshop, 25.03.2015

TomoSAR Deformation Results

Seasonal deformation map (Descending)

Processed by Tomo-GENESIS, DLR

Linear deformation map (Descending)

Seasonal deformation map (Ascending)

Processed by Tomo-GENESIS, DLR

Linear deformation map (Ascending)

Processed by Tomo-GENESIS, DLR

DLR.de • Chart 19 > Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks > Sina Montazeri et.al • FRINGE workshop, 25.03.2015

Geodetic Point Cloud Fusion

 $X = 3783630.014 \pm 0.010 \text{ m}$

 $Y = 899035.0040 \pm 0.010 m$

 $Z = 5038487.589 \pm 0.011 \text{ m}$

Geodetic Point Cloud Fusion

Selected reference point: Base of a lamp post near central railway station

ITRF 2008:

We expect a bias of approximately 20 cm due to the diameter of the lamp post

 \rightarrow RT - InSAR theory and techniques (24.03)

Geodetic Point Cloud Fusion

$dz = \frac{D \cdot \tan\left(\theta_{Asc}\right) \cdot \tan\left(\theta_{Dsc}\right)}{\tan(\theta_{Asc}) + \tan\left(\theta_{Dsc}\right)}$
$dx_{Asc} = dxy_{Asc} \cdot \cos(\alpha_{Asc})$
$dy_{Asc} = -dxy_{Asc} \cdot \sin(\alpha_{Asc})$
$dx_{Dsc} = dxy_{Dsc} \cdot \cos(\alpha_{Dsc})$
$dy_{Dsc} = -dxy_{Dsc} \cdot \sin(\alpha_{Dsc})$

Berlin in 3D

Processed by Tomo-GENESIS, DLR

DLR.de • Chart 24 > Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks > Sina Montazeri et.al • FRINGE workshop, 25.03.2015

Motion Decomposition

Up

43.3

-0.8

277.8

Motion Decomposition (Geometry Assessment)

- Assuming a single scatterer is visible in all the four stacks
- A concept similar to Dilution of Precision (DOP) in GPS:
 - A: Design matrix (based on α_h , θ_{inc})
 - $\sigma = 1$

$$G = \sigma^2 \cdot (A^T A)^{-1}$$

East

-0.8

(0.51)

-5.4

North

277.8

-5.4

1801

 $[6.6 \ 0.7 \ 42.5]$

Seasonal Motion Decomposition (Berlin Central Station)

Linear Motion Decomposition (Berlin Central station)

Seasonal Motion Decomposition (Eisenbahn Bridge)

Conclusions and Outlook

- Motion decomposition based on multiple-viewing angles:
 - The functional model of deformation should contain the three components in order to prevent biased deformation estimates.
 - In urban area monitoring using X-band data the seasonal deformation should be considered.
 - Seasonal deformation in the order of 12 mm (between summer and winter 24 mm) in the eastwest direction were observed in Berlin central station.
- Retrieval of the motion components by L1 norm preserves more information than L2.
- GPS deformation observations can be corporated to provide absolute deformations.

DLR.de • Chart 30 > Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks > Sina Montazeri et.al • FRINGE workshop, 25.03.2015

Thank you for your attention!

