An Atmospherically Corrected DInSAR SBAS network and its Decomposition into a 3D Field Vector for tectonic deformation detection over the Hyblean Plateau, Italy

<u>Andreas Vollrath</u>¹, David Bekaert², Alessandro Bonforte³, Francesco Guglielmino³, Andy Hooper², Salvatore Stramondo⁴ & Francesco Zucca¹

¹ University of Pavia, Dept. of Earth & Env. Science, Via Ferrata 1, 27100 Pavia, Italy
 ² University of Leeds, COMET, School of Earth and Environment, Leeds LS2 9JT, United Kingdom
 ³ Istituto Nazionale di Geofisica e Vulcanologia INGV, Osservatorio Etneo, Piazza Roma 2, 95125 Catania, Italy
 ⁴ Istituto Nazionale di Geofisica e Vulcanologia INGV, Via Vigna Murata 635, 00143 Roma, Italy

Outline

- Study Area
- Data & Methodology
- Results
- Conclusion & Outlook

- South-east Sicily
- Hyblean Plateau, north Pelagian block of Nubia Plate
- Late-Miocene Orogenesis
- Maghrebian belt
- Highly Exposed to seismic hazard
- UNESCO Cultural heritage Sites, Oil Refineries

PGA Hazard Data taken from Montaldo & Meletti (2006): INGV-DPC

4

"Within this area, Italy is the result of a complex geodynamic evolution and is now characterized by a set of different crustal blocks trapped **between the Eurasian and African rigid plates** (Fig. 1),whose **kinematic and lateral variation in thickness and rheological parameters**, make the convergence zone **fragmented and irregularly shaped**." (Angelica et al., 2013)

"[...] However, the way the observed internal deformation of Sicily is presently accommodated by faults and the number of faults that may take up this deformation is **unclear**. Improved understanding of the **regional block kinematics** and **strain accumulation** rates across faults is important for the evaluation of the **seismic hazard** of the region, which is among the highest in the mediterrenean." (Ventura et al., 2014)

"Within this area, Italy is the result of a complex geodynamic evolution and is now characterized by a set of different crustal blocks trapped **between the Eurasian and African rigid plates** (Fig. 1),whose **kinematic and lateral variation in thickness and rheological parameters**, make the convergence zone **fragmented and irregularly shaped**." (Angelica et al. 2013)

"[...] However, the way the observed internal deformation of Sicily is presently accommodated by faults and the number of faults that may take up this deformation is **unclear**. Improved understanding of the **regional block kinematics** and **strain accumulation** rates across faults is important for the evaluation of the **seismic hazard** of the region, which is among the highest in the mediterrenean." (Ventura 2014 et al.)

- Major historical EQs (1169, 1542, 1693)
 - Controversial scientific opinions
 - Mostly strike-slip faulting
 - Recent EQ activity only of small magnitude earthquake

Taken from: Musumeci et al. 2014

UNIVERSITY OF LEEF

- Tectonic signal of deformation overlaid by:
 - Subsidence:
 - Water pumping (Canova et al. 2012, Carloni 2011)
 - Karst (Di Maggio et al. 2012)
 - (Sea wedging seasonal)
 - Strong turbulent atmosphere due to nearby sea

Envisat ASAR IM Track 129 Ascending: 49 scenes Envisat ASAR IM Track 222 Descending: 58 scenes	Input data	
Envisat ASAR IM Track 222 Descending: 58 scenes	Envisat ASAR IM Track 129 Ascending: 49 scenes	
	Envisat ASAR IM Track 222 Descending: 58 scenes	

UNIVERSITY OF LEEDS

Track 129 (49 scenes): Ascending

Track 222 (58 scenes): Descending

- In accordance with:
 - Dynamics of Etna
 (Bonforte et al. 2011, Froger 2001)
 - Subsidence Area of Augusta (Canova et al. 2012)
 - Industrial area south of Catania

UNIVERSITY OF LEEDS

Data & Methodology

12

- ERA-INTERIM atmospheric correction (Doin et al., 2009):
 - Part of TRAIN toolbox (Toolbox for Reducing Atmospheric InSAR Noise)
 - Bekaert et al., 2015 & http://davidbekaert.com/#links
 - Tropospheric delay maps calculated
 - refractivity along radar wave travely
 - Based on: Temperature, pressure, water vapour
 - Ideally removes topography-correlated atmosphere signal
 - Temporally (seasonality)
 - Spatially (topography)

- ERA-INTERIM atmospheric correction (Doin et al., 2009):
 - Part of TRAIN toolbox (Toolbox for Reducing Atmospheric InSAR Noise)
 - Bekaert et al., 2015 & http://davidbekaert.com/#links
 - Tropospheric delay maps calculated
 - refractivity along radar wave travel path
 - Based on: Temperature, pressure, water vapour
 - Ideally removes topography-correlated atmosphere signal
 - Temporally (seasonality)
 - Spatially (topography)

Results Mean Velocity in LOS

V C E

500000

UNIVERSITY OF LEEDS

Raw Stack

mm/y +5

Legend

ΑZ

LOS

450000

Ref. Area

Faults

15

Results Standard Deviations

Raw Stack - APS

Raw Stack

25 km

Results Mean Velocity in LOS

UNIVERSITY OF LEEDS

LOS

17

Results **Standard Deviations**

UNIVERSITY OF LEEDS

LOS

ΑŻ

25 km

UNIVERSITY OF LEEDS

Data & Methodology

19

UNIVERSITY OF LEED

Data & Methodology

- Spatial Enhancement (SAGA GIS):
 - Closing gaps (Spline Interpolation; < 100 Pixels)
 - Multi-directional local-statistics Lee Filter (Lee, 1998)
 - Preserves degrees and ditches
 - Calculates the variance in 16 different directions
 - Local mean filters for the area with the lowest variance
 - Original values remain for high variance areas

Taken from: Selige et al. 2006

- Spatial Enhancement (SAGA GIS):
 - Closing gaps (Spline Interpolation; < 100 Pixels)
 - Multi-directional local-statistics Lee Filter (Lee, 1998)
 - Preserves degrees and ditches
 - Calculates the variance in 16 different directions
 - Local mean filters for the area with the lowest variance
 - Original values remain for high variance areas

Results Spatial Enhancement Closed Gaps

Raw Stack - APS

UNIVERSITY OF LEEDS

25 km

Multi-Directional Filtered

• SISTEM:

- Simultaneous and Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measurements (Guglielmino et al., 2011)
- Simultaneous:
 - Based on elastic theory
 - No preliminary interpolation of sparse GPS necessary
- Integrated
 - GPS, multiple DInSAR, Levelling, tilt measurements
- Output
 - 3D-Displacement field
 - Strain Tensor, Rigid Body Rotation Tensor
- Good results for volcanic and coseismic deformation (Guglielmino et al., 2010, 2013

• SISTEM:

- Simultaneous and Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measurements (Guglielmino et al., 2010)
- Simultaneous:
 - Based on elastic theory
 - No preliminary interpolation of sparse GPS necessary
- Integrated:
 - GPS, multiple DInSAR, Levelling, tilt measurements
- Output:
 - 3D-Displacement field
 - Strain Tensor, Rigid Body Rotation Tensor
- Good results for volcanic and coseismic deformation (Guglielmino et al., 2010, 2013

• SISTEM:

- Simultaneous and Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measurements (Guglielmino et al., 2010)
- Simultaneous:
 - Based on elastic theory
 - No preliminary interpolation of sparse GPS necessary
- Integrated:
 - GPS, multiple DInSAR, Levelling, tilt measurements
- Output:
 - 3D-Displacement field
 - Strain Tensor, Rigid Body Rotation Tensor
- Good results for volcanic and coseismic deformation (Guglielmino et al., 2010, 2013)

Results

UNIVERSITY OF LEEDS

Results

UNIVERSITY OF LEEDS

SISTEM vel. - north

SISTEM vel. - east

SISTEM vel. - Up

Results

UNIVERSITY OF LEFT

Conclusions & Outlook

- Presented a methodology for tectonic ground deformations
 - Works also for other phenomena
- Proposed use of external weather model data
- Proposed filtering approach in order to:
 - better coverage (w.r.t. also to SISTEM)
 - no local peaks
- SISTEM approach for 3D decomposition of the velocity components
- SISTEM is able to retrieve known deformation really well
- north-south movement partly visible even away of GPS!

Conclusions & Outlook

- Presented a methodology for tectonic ground deformations
 - Works also for other phenomena
- Proposed use of external weather model data
- Proposed filtering approach in order to:
 - better coverage (w.r.t. also to SISTEM)
 - no local peaks
- SISTEM approach for 3D decomposition of the velocity components
- SISTEM is able to retrieve known deformation really well
- north-south movement partly visible even away of GPS!

Conclusions & Outlook

- Further validation needed (i.e. Corner Reflectors, GPS)
 - Karst?
 - Movement along the Scicli-Ragusa fault?
- Calculation of strain, shear stress and rigid body rotation sensor

UNIVERSITY OF LEED

Thank you for your attention !!!

Acknowledgements: MIUR, University of Pavia INGV Roma INGV Catania School of Earth and Environment at the Univ. of Leeds ESA for provision of data (Cat-1: 13948)