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Figure 1. Virunga Volcanic Province. Background image is 30 m resolu-
tion SRTM DEM. Coherent area common to all images acquired during
2006–2010 is outlined in black. 2004, 2006 and 2010 eruptive centres are
shown as black diamonds. P1–P8 regions are studied in detail in the paper.
City of Goma, Lake Kivu, Mt Nyamuragira and Mt Nyiragongo are shown.

wave-band, azimuth and incidence angles, different spatial and tem-
poral sampling and resolution, including air-borne and space-borne
data from sensors with varying parameters. In addition to presenting
geophysical results we demonstrate results of numerical simulation
and describe methods for smoothing produced multidimensional
time-series. Such analysis is important for understanding the accu-
racy and limitations of the proposed methodology. We do not intend
to model observed ground deformation but we want to provide here
only qualitative analysis.

2 G E O L O G I C A L C O N T E X T

We apply this technique to studying volcanic deformation of the
Virunga Volcanic Province (VVP), North Kivu, Democratic Repub-
lic of Congo located along the Western branch of the East Africa
Rift (EAR; Fig. 1). The EAR is a major tectonic feature that shapes
Central Africa and defines the Rift Valley, a lowland area between
highland ranges which formed due to the action of geological faults
and is associated with earthquakes and volcanoes. The VVP is a
transfer zone between two segments of the Western Branch of the
EAR (Chorowicz 2005). The VVP marks the northern end of the
Kivu basin, a 100 km-long and 30 km-wide half-graben hosting
Lake Kivu. The VVP constitutes the transition between the Kivu
basin to the South and the Lake Edward basin to the North (Ebinger
1989).

The VVP has been active since the mid-Miocene, its active vol-
canoes were however only discovered at the end of the 19th century.
Currently, the VVP experiences low seismicity but hosts, among its
eight main volcanic edifices, two of the most active volcanoes of

Africa: Nyamuragira and Nyiragongo. The first erupted about 30
times over the last century (Smets et al. 2010) whereas the second
hosts in its crater what is currently believed to be the largest (semi-)
permanent lava lake on Earth.

During the two sole historical eruptions known since its discovery
(i.e. 1977 and 2002), the Nyiragongo lava lake was drained through a
network of fractures that opened from the volcano up to the nearby
city of Goma located 15 km to the south (Tazieff 1977; Durieux
2004; Komorowski et al. 2004; Tedesco et al. 2007). The highly
silica-undersaturated lavas flowed at high speed and destroyed entire
villages and a part of the city of Goma within a few hours.

In contrast, Nyamuragira lava flows affect only the equatorial
forest of the Virunga National Park, although when flowing towards
the south, lava can reach inhabited areas and even the shore of Lake
Kivu as it happened in 1938 and 1948 (Smets et al. 2010).

On 2010 January 2 a 600 m-long fracture opened along the south-
ern flank of the volcano after less than an hour of precursory seismic
activity (BGVN 2010) and a 10 km-long lava flow devastated more
than 900 ha of forest in less than 3 weeks. The previous eruption
occurred almost at the same place on 2006 November 27, but it was
preceded by more than 1.5 days of precursory long-period seismic
swarms.

These Nyiragongo and Nyamuragira lava flows cutting through
the equatorial vegetation constitute large zones were the satellite
radar signals remain coherent over time. This offers the possibility
of using satellite radar interferometry (InSAR) to study the ground
deformation associated with these eruptions (d’Oreye et al. 2008;
Wauthier et al. 2012).

In this study, we make use of eight independent data sets: six
ENVISAT, one ALOS PALSAR and one RADARSAT-2 fine beam
set spanning all together about eight years from 2003 to 2010 in both
ascending and descending geometries (Table 1, Fig. 2). We perform
two runs. The first run utilizes only three tracks from ENVISAT
spanning 2006–2010. This run has shorter temporal span but better
spatial coverage due to larger common footprint of the three data
sets. The horizontal and vertical time-series produce by the second
run based on eight data sets spanning 2003–2010 were calculated
from over a thousand interferograms.

3 M E T H O D O L O G Y

In case of a single set of SAR acquired by a sensor with an azimuth
θ and an incidence angle φ the time-series of deformation can be
reconstructed by applying the SBAS method (Berardino et al. 2002;
Usai 2003)

AVlos = #obs, Vlos = A+#obs, di+1
los = di

los + V i+1
los $t i+1, (1)

where A is a matrix constructed from the time intervals between
consecutive SAR acquisitions, V los is a vector of the unknown line-
of-sight velocities, #obs is a vector of observed interferogram values,
A+ is a pseudo-inverse of matrix A found by applying the singular
value decomposition (SVD), and di

los is a line-of-sight displacement
at the time ti. The problem stated by the eq. (1) is over-determined
when the number of linear independent equations M∗ is equal to the
number of unknown velocities: M∗ = (N − 1), where N is a number
of SAR images used in processing, and the total number of equa-
tions (i.e. observed interferograms) is greater than the number of
unknown velocities: M > (N − 1). The problem is under-determined
when the number of linear independent equations is less than the
number of unknown velocities: M∗ < (N − 1).

C© Her Majesty the Queen in right of Canada 2012. Reproduced with the permission of the Minister of Natural Resources Canada, GJI, 191, 1095–1108
Geophysical Journal International C© 2012 RAS
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tion SRTM DEM. Coherent area common to all images acquired during
2006–2010 is outlined in black. 2004, 2006 and 2010 eruptive centres are
shown as black diamonds. P1–P8 regions are studied in detail in the paper.
City of Goma, Lake Kivu, Mt Nyamuragira and Mt Nyiragongo are shown.
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City of Goma, Lake Kivu, Mt Nyamuragira and Mt Nyiragongo are shown.
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ENVISAT, one ALOS PALSAR and one RADARSAT-2 fine beam
set spanning all together about eight years from 2003 to 2010 in both
ascending and descending geometries (Table 1, Fig. 2). We perform
two runs. The first run utilizes only three tracks from ENVISAT
spanning 2006–2010. This run has shorter temporal span but better
spatial coverage due to larger common footprint of the three data
sets. The horizontal and vertical time-series produce by the second
run based on eight data sets spanning 2003–2010 were calculated
from over a thousand interferograms.

3 M E T H O D O L O G Y

In case of a single set of SAR acquired by a sensor with an azimuth
θ and an incidence angle φ the time-series of deformation can be
reconstructed by applying the SBAS method (Berardino et al. 2002;
Usai 2003)

AVlos = #obs, Vlos = A+#obs, di+1
los = di

los + V i+1
los $t i+1, (1)

where A is a matrix constructed from the time intervals between
consecutive SAR acquisitions, V los is a vector of the unknown line-
of-sight velocities, #obs is a vector of observed interferogram values,
A+ is a pseudo-inverse of matrix A found by applying the singular
value decomposition (SVD), and di

los is a line-of-sight displacement
at the time ti. The problem stated by the eq. (1) is over-determined
when the number of linear independent equations M∗ is equal to the
number of unknown velocities: M∗ = (N − 1), where N is a number
of SAR images used in processing, and the total number of equa-
tions (i.e. observed interferograms) is greater than the number of
unknown velocities: M > (N − 1). The problem is under-determined
when the number of linear independent equations is less than the
number of unknown velocities: M∗ < (N − 1).
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Figure 1. Virunga Volcanic Province. Background image is 30 m resolu-
tion SRTM DEM. Coherent area common to all images acquired during
2006–2010 is outlined in black. 2004, 2006 and 2010 eruptive centres are
shown as black diamonds. P1–P8 regions are studied in detail in the paper.
City of Goma, Lake Kivu, Mt Nyamuragira and Mt Nyiragongo are shown.

wave-band, azimuth and incidence angles, different spatial and tem-
poral sampling and resolution, including air-borne and space-borne
data from sensors with varying parameters. In addition to presenting
geophysical results we demonstrate results of numerical simulation
and describe methods for smoothing produced multidimensional
time-series. Such analysis is important for understanding the accu-
racy and limitations of the proposed methodology. We do not intend
to model observed ground deformation but we want to provide here
only qualitative analysis.

2 G E O L O G I C A L C O N T E X T

We apply this technique to studying volcanic deformation of the
Virunga Volcanic Province (VVP), North Kivu, Democratic Repub-
lic of Congo located along the Western branch of the East Africa
Rift (EAR; Fig. 1). The EAR is a major tectonic feature that shapes
Central Africa and defines the Rift Valley, a lowland area between
highland ranges which formed due to the action of geological faults
and is associated with earthquakes and volcanoes. The VVP is a
transfer zone between two segments of the Western Branch of the
EAR (Chorowicz 2005). The VVP marks the northern end of the
Kivu basin, a 100 km-long and 30 km-wide half-graben hosting
Lake Kivu. The VVP constitutes the transition between the Kivu
basin to the South and the Lake Edward basin to the North (Ebinger
1989).

The VVP has been active since the mid-Miocene, its active vol-
canoes were however only discovered at the end of the 19th century.
Currently, the VVP experiences low seismicity but hosts, among its
eight main volcanic edifices, two of the most active volcanoes of

Africa: Nyamuragira and Nyiragongo. The first erupted about 30
times over the last century (Smets et al. 2010) whereas the second
hosts in its crater what is currently believed to be the largest (semi-)
permanent lava lake on Earth.

During the two sole historical eruptions known since its discovery
(i.e. 1977 and 2002), the Nyiragongo lava lake was drained through a
network of fractures that opened from the volcano up to the nearby
city of Goma located 15 km to the south (Tazieff 1977; Durieux
2004; Komorowski et al. 2004; Tedesco et al. 2007). The highly
silica-undersaturated lavas flowed at high speed and destroyed entire
villages and a part of the city of Goma within a few hours.

In contrast, Nyamuragira lava flows affect only the equatorial
forest of the Virunga National Park, although when flowing towards
the south, lava can reach inhabited areas and even the shore of Lake
Kivu as it happened in 1938 and 1948 (Smets et al. 2010).

On 2010 January 2 a 600 m-long fracture opened along the south-
ern flank of the volcano after less than an hour of precursory seismic
activity (BGVN 2010) and a 10 km-long lava flow devastated more
than 900 ha of forest in less than 3 weeks. The previous eruption
occurred almost at the same place on 2006 November 27, but it was
preceded by more than 1.5 days of precursory long-period seismic
swarms.

These Nyiragongo and Nyamuragira lava flows cutting through
the equatorial vegetation constitute large zones were the satellite
radar signals remain coherent over time. This offers the possibility
of using satellite radar interferometry (InSAR) to study the ground
deformation associated with these eruptions (d’Oreye et al. 2008;
Wauthier et al. 2012).

In this study, we make use of eight independent data sets: six
ENVISAT, one ALOS PALSAR and one RADARSAT-2 fine beam
set spanning all together about eight years from 2003 to 2010 in both
ascending and descending geometries (Table 1, Fig. 2). We perform
two runs. The first run utilizes only three tracks from ENVISAT
spanning 2006–2010. This run has shorter temporal span but better
spatial coverage due to larger common footprint of the three data
sets. The horizontal and vertical time-series produce by the second
run based on eight data sets spanning 2003–2010 were calculated
from over a thousand interferograms.

3 M E T H O D O L O G Y

In case of a single set of SAR acquired by a sensor with an azimuth
θ and an incidence angle φ the time-series of deformation can be
reconstructed by applying the SBAS method (Berardino et al. 2002;
Usai 2003)

AVlos = #obs, Vlos = A+#obs, di+1
los = di

los + V i+1
los $t i+1, (1)

where A is a matrix constructed from the time intervals between
consecutive SAR acquisitions, V los is a vector of the unknown line-
of-sight velocities, #obs is a vector of observed interferogram values,
A+ is a pseudo-inverse of matrix A found by applying the singular
value decomposition (SVD), and di

los is a line-of-sight displacement
at the time ti. The problem stated by the eq. (1) is over-determined
when the number of linear independent equations M∗ is equal to the
number of unknown velocities: M∗ = (N − 1), where N is a number
of SAR images used in processing, and the total number of equa-
tions (i.e. observed interferograms) is greater than the number of
unknown velocities: M > (N − 1). The problem is under-determined
when the number of linear independent equations is less than the
number of unknown velocities: M∗ < (N − 1).
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Table 1. SAR data sets used in this work: time span (in YYYYMMDD format), azimuth θ and incidence φ

angles, number of available SAR images N and number of calculated interferograms M .

InSAR set Time span θ (◦) φ (◦) N M

ENVISAT, Track 035IS2 (dsc) 20030116–20100916 −168 25 42 224
ENVISAT, Track 450IS7 (dsc) 20060519–20100910 −168 44 30 169
ENVISAT, Track 314IS7 (asc) 20060613–20100831 −12 44 41 308

ENVISAT, Track 228IS2 (asc) 20021225–20061025 −12 23 33 53
ENVISAT, Track 042IS5 (asc) 20080424–20100916 −12 38 20 96
ENVISAT, Track 493IS4 (dsc) 20080421–20100913 −168 34 18 86
ALOS, Track 580 (asc) 20071027–20100504 −12 39 9 36
RADARSAT-2, F21 (dsc) 20091215–20110527 −168 35 16 79

Total (only used images): 20030116–20100916 181 1051

Figure 2. Distribution of interferograms and their perpendicular baselines
for selected data sets used in these study. For ENVISAT track 035 (dsc),
we plotted only interferograms acquired before 2007 using baselines corre-
sponding to actual master image acquired on 2010 January 14 (not shown
here). Additional data sets not shown here mostly span 2006–2010 time pe-
riod. Vertical lines correspond to start and end time of investigated periods,
internal lines correspond to first (with three InSAR sets) run and external
lines correspond to second (with eight InSAR sets) run.

In case of K multiple SAR sets acquired by sensors with different
orbital parameters (e.g. azimuth and incidence angles) the eq. (1)
can be rewritten in the following form for each set k = 1 . . . K

| Sk
N A Sk

E A Sk
U A | · | VN VE VU |T = #k

obs (2)

assuming that Vlos = SV = SN VN + SEVE + SUVU and S =
{SN, SE, SU} = {sin θ sin φ, − cos θ sin φ, cos φ}, where S is a line-
of-sight unit vector with north, east and up components SN, SE, SU

and V is a velocity (ground deformation rate) vector with compo-
nents V N, V E, V U.

Then a multidimensional SBAS (MSBAS) method that includes
all K sets of independently acquired SAR data can be presented in
the following form:




A1

A2

. . .

AK









VN

VE

VU




=





#1

#2

. . .

#K




or ÂV̂los = #̂obs, (3)

where the new matrix Â (as in 2) has dimensions 3($K
k=1 N k − 1) ×

$K
k=1 Mk , the new vector V has dimensions 1 × 3($K

k=1 N k − 1), and
the new vector #obs has dimensions 1 × $K

k=1 Mk .
This problem is usually under-determined because the number of

linearly independent equation is less than the number of unknown

velocities. Indeed, if all SAR images were acquired at different times
ti then the number of unknowns would be equal to 3($K

k=1 N k − 1)
and the maximum possible number of independently observed inter-
ferograms would be equal to ($K

k=1 N k − K ). Additional constrains
that increase rank of Â are introduced by utilizing variability in
directional cosines SN, SE, SU applied to rows of this matrix.

All modern space-borne SAR systems orbit the earth in a near-
polar orbit and can acquire data only in two independent acquisition
geometries: ascending and descending. Such acquisition geometries
are not very sensitive to a motion in northern direction (i.e. along
track). Therefore, the number of unknowns in the eq. (3) can be
reduced to 2($K

k=1 N k − 1) by excluding all terms responsible for
northern motion VN . Such approximation is reasonable when the
magnitude of north–south component of deformation is comparable
to (not significantly larger than) the magnitude of east-west and
vertical components (Wright et al. 2004).

Solution of the problem stated by the eq. (3) is found by applying
SVD to Â. In a least square sense an unlimited number of solutions
of (3) exists but only minimum norm solution is selected by SVD.
Due to rank deficiency of the stated problem the calculated solution
oscillates around the true but unknown solution. In the following
sections of this paper, we refer to such solution as a raw solution.

To remove oscillations caused by a rank deficiency of the problem
(3) we apply Tikhonov regularization (Tikhonov & Arsenin 1977).
The regularized problem can be written in the following form:



Â

λI








VE

VU



 =
(

#̂

0

)

, (4)

where λ is a regularization parameter that can be found, for exam-
ple, using L-curve method (Hansen & O’Leary 1993) and I is a
2($K

k=1 N k −1)×2($K
k=1 N k −1) identity matrix. Tikhonov regular-

ization is one of the possible methods for regularization of ill-posed
problems, which solutions either do not exist, non-unique or unsta-
ble. The L-curve method is based on the plot for all regularization
parameters of the size of the regularized solution versus the cor-
responding residual. Using this method the optimal parameter λ

is selected at the intersection of the vertical and horizontal lines
of the ‘L’. The practical example of Tikhonov regularization with
software code can be found in section 19.5 (Linear Regularization
Methods) of Press et al. (2007). Such a solution is furthermore
called a ‘regular solution’.

An alternative to regularization is low-pass filtering in the time
domain. In this case we apply Gaussian smoothing (e.g. Gonzalez
& Woods 2001) that does not require an uniform temporal spacing.
Such solution is called a filtered solution from here on.

From a computational point of view the regularization approach
is preferable since it is applied during the inversion of matrix Â and

C© Her Majesty the Queen in right of Canada 2012. Reproduced with the permission of the Minister of Natural Resources Canada, GJI, 191, 1095–1108
Geophysical Journal International C© 2012 RAS

N:	
  number	
  of	
  SAR	
  images	
  
M:	
  number	
  of	
  interferograms	
  

θ:	
  azimuth	
  
φ:	
  incidence	
  (look)	
  angle	
  

Available	
  datasets	
  :	
  8	
  years;	
  3	
  satellites;	
  8	
  geometries	
  	
  	
  =>	
  	
  	
  1051	
  interferograms	
  

Footprint	
  of	
  the	
  8	
  sets	
  of	
  SAR	
  images	
  



Post-eruptive 
long term 
subsidence  rate 
changes 

Background = 
vertical mean 
velocity 
(2003-2010). 

X - 30 SAMSONOV AND D’OREYE: TIME SERIES FROM COMBINED INSAR DATA

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(a)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(b)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(c)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(d)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(e)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(f)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(g)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(h)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(i)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(j)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(k)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(l)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(m)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(n)

-15

-10

-5

 0

 5

 10

 2003  2004  2005  2006  2007  2008  2009  2010  2011

D
is

pl
ac

em
en

t, 
cm

Time, year

 East-West
Up-Down

(o)

Figure 7. 2003-2010 east-west and vertical time series of ground deformation at points P4-

P8 (rows top to bottom). Raw (first column), regularized (second column) and filtered (third

column) time series are shown.D R A F T December 13, 2011, 11:14am D R A F T
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Conclusions	
  
Ø Research	
  in	
  that	
  area	
  requires	
  a	
  long	
  term	
  perspec>ve	
  

Ø Sustainability	
  of	
  research	
  and	
  associated	
  development	
  involves:	
  
•  Strong	
  commitment	
  and	
  networking	
  with	
  local	
  authori>es	
  
•  Training,	
  maintenance	
  of	
  ground	
  based	
  systems	
  etc.	
  	
  
•  Societal	
  aspects	
  
•  (è	
  poster	
  83)	
  

	
  
Ø Methodological	
  development	
  are	
  promising	
  

•  SplitBand	
  and	
  MSBAS	
  are	
  promising	
  
•  (è	
  poster	
  84)	
  
	
  

Ø Main	
  requirement	
  in	
  SAR	
  data:	
  
•  High	
  acquisi>on	
  rate	
  
•  Appropriate	
  geometry	
  and	
  baseline	
  (Asc	
  /	
  Desc,	
  incidence)	
  
•  Wavelength	
  (and	
  polariza>on)	
  


