Sentinel-1 Interferometry using the Integrated Wide Area Processor (IWAP) – First Experiences

R. Brcic, N. Yague-M., F. Rodriquez-G., R. Shau, N. Sakar Remote Sensing Technology Institute (IMF)

Overview

- Design of IWAP Burst-Mode
- Sentinel-1 Experiments
 - Standard Approach
 - Full Exploitation of Spectral Diversity in ESD
 - Experiments (Genoa, Istanbul)
- Slice Mosaicking
- TerraSAR-X ScanSAR PSI

Integrated Wide Area Processor (IWAP)

A multi-mode multi-sensor PS-InSAR processor

- Based TMSP, ITP, PSI-GENESIS
- Flexible modular approach
- Automated
 - User notified when intervention necessary
 - Visual interfaces aid decision process and QC
- Computationally efficient
 - Multi-threading
 - Parallel processing
- Easy archival, packaging of important results
- Version control
- Snapshot of processor can be exported

Design Requirements

- SM and SL modes are **single burst modes**
 - Single contiguous SLC
 - Doppler centroid continuous over scene
- TOPSAR and ScanSAR are (multi) burst modes
 - Multiple discontiguous SLCs
 - Doppler centroid continuous over a burst but discontinuous between bursts or over a scene

Design Requirements

- Enable processing of all modes with IWAP
 - SM
 - SL
 - TOPSAR
 - ScanSAR
- Introduce workflows for
 - non-burst mode (SM, SL)
 - burst mode (TOPS, ScanSAR)
- Allows unified approach of burst mode acquisitions regardless of configuration (# beams, # bursts, burst size)

Burst-Mode Structure

Three level hierarchical structure

Coregistration

• Azimuth coregistration accuracy requirement for TOPS is 1/1000 pixels

 $\phi_{err} = 2\pi f_{DC} \Delta t_{AZ}$

• Limits azimuth phase ramp to 1/100 cycles

Coregistration

- Coherent Cross-Correlation (CCC)
 - MLE for distributed Gaussian scatterers, requires DEM
- 1. Incoherent (Amplitude) Cross-Correlation (ICC)
 - Robust (speckle tracking, no phase)
 - Time consuming (oversampling, detection)
- PS-Geometric Coregistration (standard SM approach)
 - Quick but insufficient accuracy for TOPS
- 2. Enhanced Spectral Diversity (ESD)
 - Best accuracy
 - Requires a priori coregistration to ambiguity band of 1/10 pixel
- PS-ESD

Coregistration

- ICC if orbits uncertain, refined by or checked with ESD
- ESD if orbits are of sufficient quality (< 1/10 azimuth pixel)
- ICC and ESD are run beam-wise
 - Apply independent beam-wise corrections
 - Combine beam-wise estimates for a single global correction

Coregistration Workflow

Mosaicking at burst, beam or scene level + Quality Control (ESD)

IWAP Sensor and Imaging Mode Support

• Before: 5 combinations

Soncor and Format	Imaging Mada	Status			
Sensor and Format	imaging would	Import	InSAR	PSI	
ERS-1/2 (CEOS, Envisat)	SM	Operational			
Envisat (Envisat)	SM	Operational			
ALOS-PALSAR	SM	Operational			
TerraSAR-X*	SM	Operational			
TerraSAR-X*	SL (+ HS)	Operational			

* TerraSAR-X includes TSX and TDX

IWAP Sensor and Imaging Mode Support

• After: 10 combinations

			Status	
Sensor and Format	Imaging Wode	Import	InSAR	PSI
ERS-1/2 (CEOS, Envisat)	SM	Operational		
Envisat (Envisat)	SM	Operational		
ALOS-PALSAR	SM	Operational		
TerraSAR-X*	SM	Operational		
TerraSAR-X*	SL (+ HS)	Operational		
TerraSAR-X*	ScanSAR (+ Wide ScanSAR)	Operational Proto		Prototype
TerraSAR-X*	TopSAR	Operational Unter		Untested
Sentinel-1	IM (+ EW)	Operational Unte		Untested
Sentinel-1	SM	Operational Unte		Untested
Sentinel-1	WV	Operational NA N		NA

* TerraSAR-X includes TSX and TDX

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - SM: 3
- Totaling more than 160 burst-mode interferograms

RadarSAT-2 IW Salar de Uyuni, 285x302 km

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - SM: 3
- Totaling more than 160 burst-mode interferograms

TerraSAR-X TOPSAR Mexico City, 107x81 km

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - SM: 3
- Totaling more than 160 burst-mode interferograms

TerraSAR-X ScanSAR Hoover Dam, 103x99 km

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - SM: 3
- Totaling more than 160 burst-mode interferograms

TerraSAR-X Wide ScanSAR Salar de Arizaro, 220x206 km

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - SM: 3
- Totaling more than 160 burst-mode interferograms

Sentinel-1 IW Munich, 250x170 km

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - SM: 3
- Totaling more than 160 burst-mode interferograms

Sentinel-1 EW Chicago, 384x431 km

- RadarSAT-2 (11 infs)
 - IW TOPSAR: 2 (InSAR Pairs) + 10 (InSAR Stack)
- TerraSAR-X (~98 infs)
 - TOPSAR: 2
 - ScanSAR: ~95 (PSI Stack)
 - Wide ScanSAR: 1
- Sentinel-1 (~55 infs from Commisioning Phase)
 - IW TOPSAR: ~50
 - EW TOPSAR: 2
 - **SM**: 3
- Totaling more than 160 burst-mode interferograms

Sentinel-1 SM Napa Earthquake, 80x130 km

- Acquisition lies over north-west Italy
- Elevation reaches 2000 m
- Urban areas, plains, ocean, forested mountains

- 3 Beams, 9 Bursts
- ICC coregistration + ESD quality control
- No visible discontinuities

Master Date	19-08-2014
Slave Date	07-08-2014 (12 days)
Mode	IW
Resolution	4.5 m x 20.9 m (Burst 1, Beam 1)
Extension	249 km x 179 km
Polarisation	VV
Orbit Direction	Ascending
Effective Baseline	121.4 m avg.
Height of Ambiguity	128.5 m avg.
Incidence Angle	30.5° – 45.9° (15.4°)
Average Coherence	0.17

DEM Corrected Interferometric Coherence and Phase

- ESD Quality Control runs after ICC
- Agreement to 1 milli-pixel (OSF=2)

V_{DLI}

DEM Corrected Interferometric Phase

ICC Coregistration, ICC Shift = -0.18 pixels

ESD Coregistration, ESD Shift = 0.05 pixels

Enhanced Spectral Diversity Ambiguity Band

• Phase of differential interferogram between bursts within burst overlap area

$$\phi = \frac{2\pi\Delta f_{DC}\Delta_{AZ}}{PRF}$$

P. Prats-Iraola, R. Scheiber, L. Marotti, S. Wollstadt, A. Reigber, *"TOPS Interferometry with TerraSAR-X,"* IEEE TGRS, vol. 50, no. 8, 2012.

- Δf_{DC} : Doppler centroid difference between bursts
- Δ_{AZ} : Azimuth pixel misregistration
- *PRF*: Pulse repetition frequency
- ESD ambiguity band for Sentinel-1 IW mode ~ 0.1 azimuth pixels
- Requires a priori coregistration to better than 1/10 pixels

ESD: Overlap Between Bursts 1

ESD: Overlap Between Bursts 2

"Beamwise Forward"

"same" bursts in consecutive beams $\Delta f_{DC} = 1500 \text{ Hz}, \# \text{ pixels} = 10^6$

ESD: Overlap Between Bursts 3

"Beamwise Backward"

consecutive bursts in consecutive beams $\Delta f_{DC} = 3000 \text{ Hz}, \# \text{ pixels} = 10^6$

ESD: Resolving the Ambiguity Band

Basic ESD relation

$$\phi_i = \frac{2\pi\Delta f_{DC,i}\Delta_{AZ}}{PRF}$$

Method 1: applied pixelwise to any type/combination of burst overlap

$$\widehat{\Delta_{AZ}} = \operatorname{argmin}_{\Delta_{AZ}} \left| \arg \sum_{i} e^{-j\widetilde{\phi}_{i}} \right| \qquad \widetilde{\phi}_{i} = \phi_{i} - \frac{2\pi\Delta f_{DC,i}\Delta_{AZ}}{PRF}$$

• Method 2: only to combine estimates from Method-1 from different burst overlap types, e.g. IW1 between bursts + IW1/IW2 between beams

$$\widehat{\Delta_{AZ}} = \arg\min_{\Delta_{AZ}} \sum_{i} W^2 \{ \widetilde{\phi}_i \}$$

• Combining different types of burst overlap, *each with a different ambiguity band*, leads to a larger ambiguity band.

Genoa Revisited ICC Shift 0.18, Ambiguity Band ±0.1 (OSF=2)

Genoa Revisited ICC Shift 0.18

Burstwise											
IW1		IW2		IW3		All		Ambiguity	Band		
-0.01	6	-0.05	8	-0.04	6	-0.04	5	~0.2		wrapping	
		Beamwise Forward									
	IW1/I	W2	IW2/I	W3	All		Ambig	guity Band		Correct	
	0.18		0.18		0.18		~0.6				
			Be	amwi	se Ba	ckwa	rd				
	IW1/I	W2	IW2/I	W3	All		Ambiguity Band			Wropping	
	0.097		-0.11		-0.081	L	~0.3			wrapping	
	All overlap areas in Beam / Scene										
IW1		IW2		IW3		All		Ambiguity	Band	Correct	
0.19		0.19		0.19		0.19		N/A			
4					Merelline -						

Istanbul ICC Shift 0.71, Ambiguity Band ±0.1 (OSF=2)

Istanbul ICC Shift 0.71

	Burstwise							
Wropping	Ambiguity Band	N 3	11	IW2	IW1			
wrapping	~0.2	022	0.	-0.015	-0.098			
	I	orward	nwise Fo	Bear				
Wrapping	guity Band	Ambi	V2/IW3	/IW2 IV	IW1/			
	~0.6		0.035	68	0.0			
	d	ckwar	wise Ba	Beam				
	Ambiguity Band		V2/IW3	/IW2 IV	IW1/			
Wrapping	~0.3	~0.3		26	0.0			
	1 Soono	Poom	oroco in	overlap	A 11			
Correct	Ambiguity Bond							
	Ambiguity band	v 5	I.					
	N/A	.71	0	0.71	0.71			
					7	Æ		
CONTRACTOR STATES		With Shi	El Son		R	DI		

Istanbul – DEM Corrected Interferogram

Slice Mosaicking

- An L0 datatake may be packaged as L1 slice products (IW mode)
- All slices are processed with the same parameters on a common grid
- IW slice products were interferometrically processed using IWAP and then mosaicked
- Could also mosaic L1 slice products and then perform InSAR processing → datatake level coregistration

> Sentinel-1 INSARAP Work

Remarks

- Correction of FEP or DEM phase must be consistent
- Varying local height between slices for FEP calculation → phase jumps
- No approximations in DEM corrected interferogram → no phase jumps

Calibrated Amplitude Coherence Coherence Differential Master (

Overlay

Amplitude Interferogram

Calibrated

First Experiences > 10-11 December 2014

Wide Area PSI

Greece WAP: 250 km range x 450 km azimuth 10 frames, 671 ERS SLCs, GPS absolute calibration Sentinel-1 IW: 250 km range x 170 km azimuth

-10

[mm/year]

10

TerraSAR-X ScanSAR PSI – Hoover Dam, USA

- 65 images
- Timespan: Aug 2008 Jan 2011
- Ground res: 3.8 m x 15.0 m
- Extension: 103 km x 99 km
- Polarisation: VV
- Incidence angle: 19.7° 30.3°

DEM corrected coherence and phase Master: 10-12-2009, Slave: 29-11-2009

Linear deformation (ramp compensated)

Conclusion

- IWAP adapted to process burst-mode acquisitions
 - TOPSAR
 - (Wide) ScanSAR
- Uses a combination of ICC and ESD coregistration
- Successful InSAR processing for all burst-modes on more than 160 interferograms
- Proposed method for ESD ambiguity band determination to make coregistration simpler and more robust

Future Work

- Use all slices within a datatake for a better coregistration?
- Further investigate the potential of ESD using all burst overlap regions
 - Sufficient for all orbit types (annotated, restituted, precise)?
 - Is ICC still necessary?
 - Is a simple a priori coregistration (aside from geometric) still necessary?
- Sentinel-1 IW PSI on a sufficiently sized stack

