SBAS-DInSAR processing chain for Interferometric Wide Swath Sentinel-1 data

<u>*M. Manunta,*</u> Berardino P., Bonano M., De Luca C., Elefante S., Fusco A., Lanari R., Manzo M., Pepe A., Sansosti E., Zinno I., Casu F.

CNR IREA, Via Diocleziano 328, 80124 Napoli (Italy)

SBAS-DInSAR Block Diagram

<u>Orbit Registration</u>: Rigid offset, it is retrieved in one point exploiting orbit and target location (DEM) information.

<u>Coherence Maximization</u>: Rigid offset, it is retrieved in one patch by maximizing the number of coherent points

<u>Geometric Registration</u>: it is performed point by point, using orbit and location (DEM) information

<u>Spectral Diversity Compensation</u>: the residual phase, estimated through Spectral Diversity method, is compensated directly from interferograms, without performing again the interpolation of slave images.

S-1A Commissioning Phase

Orbit Information: Annotated vs. External

External: 10-sec State Vectors

Annotated: 1-sec State Vectors

Annotated Orbit are generated by exploiting External Orbit

Acquisition Date	Annotated Information		External Information (S1A_OPER_AUX_RESORB)	
	Orbit	Coherence	Orbit	Coherence
20-10-2014	0.0	0.0	0.0	0.0
01-11-2014	6.806	6.981	6.963	6.996
13-11-2014	1.546	1.296	1.276	1.293
25-11-2014	7.110	7.335	NA	NA
Mean Error	0.21		0.02	

SBAS-DInSAR Block Diagram

SBAS approach: key points

- exploiting interferograms characterized by a "<u>small baseline</u>" in order to limit the noise (decorrelation) phenomena, thus maximizing the number of investigated pixels;
- using <u>no *a priori* or model information</u> on the investigated
 deformation signal;
- PhU operation is usually performed by applying MCF or EMCF
 techniques.

Achieved accuracies:

- • ≈ 1 2 mm/year on the mean deformation velocity
- \approx 5 10 mm on the single displacement

S-1A SBAS approach: pair selection

Orbital tube of Sentinel-1 should be very short, therefore no perpendicular baseline constraint needs to be applied.

To get redundancy of interferograms, each acquisition is coupled with the 3 following scenes in time.

The number of interferograms is about 3*(Number of acquisitions)

Acquisition Time

TOPS SBAS results: RS2 TOPS campaign over Mexico City

	Baseline		
Acq. Time	Perp. [m]	Parallel [m]	Along track [m]
04042013	-27	-30	14
28042013	-120	-98	-13
22052013	-65	-53	-22
15062013	70	30	-12
09072013	129	81	-13
02082013	0	0	0
26082013	-117	-99	8
19092013	50	-36	10
13102013	-35	-103	29
06112013	124	21	20
30112013	-23	-82	9

TOPS SBAS results: RS2 TOPS campaign over Mexico City

RS2 TOPS interferograms show good coherence (24 days revisit time)

Several RS2 TOPS scenes are affected by significant orbit errors

Azimuth

RS2 TOPS interferograms: orbital parameter correction

RS2 TOPS interferograms: orbital parameter correction

RS2 TOPS interferograms: orbital parameter correction

elikolo per li nievemento estrumenetos dell'emberde Di sangta teoscolo dell'emberde

TOPS SBAS results: RS2 TOPS campaign over Mexico City

Upcoming step: Big Data processing

ESA archives have guaranteed large availability of ERS-ENV scenes

ENVISAT coverage over Italy 2003-2010 Only ascending tracks

ENVISAT coverage over California and Nevada 2003-2010 Only ascending tracks

Upcoming step: Big Data processing

ESA archives have guaranteed large availability of ERS-ENV scenes

≈ 150 Frames x 4 Nodes for frame ≈ 600 Nodes≈ 1 day

ENVISAT coverage over Italy 2003-2010 Only ascending tracks

ENVISAT coverage over California and Nevada 2003-2010 Only ascending tracks

ESA-Grid Processing on Demand (G-POD)

G-POD computing facilities

- Currently, computing facilities at ESRIN and UK-PAC
- more than **350 CPUs in**
- about 70 Nodes
- **330 TB** of local on-line Storage
- internal dedicated 1 Gbps LAN
- **1 Gbps** for external connection
- Globus software on Linux

- Thanks to the flexibility of the GRID architecture, G-POD can easily federate additional computing and storage resources, also in Cloud environments
- CNR-IREA nodes recently federated

G-POD Web Portal of P-SBAS service

