

Dernicus

Sentine A, ins AR Capabilities: Results from the Sentinel-1A Commissioning Phase

Dirk Geudtner¹, Nestor Yaguee-Martinez², Pau Prats³, Andrea Monti **Guarnieri⁴** and Itziar Barat¹

> **ESA ESTEC DLR, Remote Sensing Technology Institute** DLR, Microwave and Radar Institute Politecnico Di Milano

Sentinel-1 SAR Imaging Modes

• SAR Instrument provides *4 exclusive SAR modes* with different resolution and coverage

- Polarisation schemes for *IW, EW & SM*:
	- \checkmark single pol: HH or VV
	- \checkmark dual pol: HH+HV or VV+VH
- Wave mode (WV): HH or VV
	- SAR duty cycle per orbit:

 $\sqrt{ }$ up to 25 *min* in any imaging mode up to *74 min* in Wave mode

Main mode of operations: *Interferometric Wide Swath (IW) mode*

satisfies most *Copernicus* service and user requirements for land & coastal monitoring (i.e. resolution, swath width, polarisation)

Wave (WV) mode is continuously operated over open ocean

Sentinel-1 SAR TOPS Mode

Constant SNR and *azimuth ambiguities*

 \checkmark Reduction of azimuth resolution due to decrease in dwell time

• S-1 IW TOPS mode parameters: $±0.6°$ azimuth scanning at Pulse Repetition Interval rate with step size of 1.6 mdeg.

Sentinel-1A IW dual-pol image, acquired over Namibia

Sentinel-1 SAR System Calibration and Performance Verification

• Verification of in-orbit SAR system performance & monitoring of stability (temperature)

Internal Calibration

- Network of Cal pulses monitors potential drifts in the instrument's Tx & Rx signal paths + entire antenna system (T/R modules)
	- − Monitoring of instrument stability over time & vs. temperature
	- − Thermal system noise characterization
	- − Inter-channel gain and phase characterization
	- − Internal instrument delay characterization
	- − TRM and EFE drift characterization based upon RFC mode

External Calibration

- Measurement of SAR system w.r.t. reference targets with known *radar cross section* (RCS)
- Absolute radiometric calibration ($<$ 1 dB (3 σ)) and stability (< 0.5 dB (3σ)
- Antenna pointing calibration (< 0.01°)
- Antenna Model verification (0.2 dB (3σ) for 2-way gain)
- Geometric calibration (pixel localization: 2.5m (3σ))
- Interferometric verification
- **Polarimetric calibration**

Sentinel-1 Internal Calibration

- Network of Cal pulses monitors potential drifts in instrument's Tx and Rx signal paths except
	- for: [−] Antenna radiators (covered by Antenna Model)
		- − Calibration couplers and calibration paths (strict stability requirements)

TxCal (V) single-pol RxCal dual-pol

Sentinel-1 Internal Calibration

- Each DT starts and ends with sequences of 6 types of Cal pulses both at nominal signal BW and at 100MHz BW (400 PRIs required):
- − 4 PCC2 phase-coded pulses (RxCal, TxCal, EPDNCal, TACal)
- − 2 non phase-coded (TxCalHIso, APDNCal)

• Cal pulses are used in ground processing for gain and phase, i.e. PG product correction

Product (complex) of Transmit power and Receive gain

Sentinel-1A Instrument stability during long datatakes

Sentinel-1A Instrument stability over 5 months

- Variations in amplitude <0.6 dB in 150 days
- Discrete jumps in phase and internal delay occur when the SES is restarted
- Amplitude and phase variations are tracked by internal calibration and compensated for by the operational SAR processor (IPF)

Sentinel-1A Geometric Calibration

Measurement of *Range-Doppler geolocation* of known reference Point target in SAR image for estimation of *systematic SAR timing offsets* in:

- *slant range* (residual internal electronic path delay and Sample Window Start Time)
- *azimuth* (radar time and spacecraft GPS time)
- \Rightarrow Absolute Location Error (ALE) = predicted measured (PTs)

Geolocation accuracy may be affected by:

- Spacecraft position (orbital state vectors) accuracy
- Survey accuracy of reference target
- Atmospheric path delay of radar signal

Cross-hair prediction depends on orbit data type

Reference Point Targets (PTs)

- 4 corner reflectors (CRs) deployed at Torny-le-Grand, Switzerland
- 3 ESA transponders deployed in the Netherlands

Sentinel-1A Geometric Calibration

Data analyzed over *Torny-le-Grand* **corner reflector** site by University of Zurich, RSL

• 19 SM and 3 IW and use of *Precise Orbit Data (POD)*

Applied corrections:

- Internal path delay
- Tectonic motion
- Solid Earth tides motion
- Atmospheric path delay

Recommendation: Annotate *slant range time delay* in SAR image data products

Repeat-pass TOPS InSAR using *Interferometric Wide Swath (IW)* data pairs worked on the 'spot'

Provides ultimate verification of:

- SAR instrument phase stability (over repeat orbit cycles)
- Satellite on-board timing and GNSS solution to support *position-tagged commanding* (OPS angle)
- Accurate orbit control and maintenance (orbital tube)
- Mission Planning system using *TOPS cycle time grid points* for datatake start time estimation
- IPF produces phase-preserving Level-1 SLC product slices

Burst synchronization

Image courtesy, DLR-IMF

Sentinel-1 Orbital Tube and InSAR Baseline

150

100

50

 -50

 -100

 -150

 -150

Basline paralel (Bs_p) [meters]

- Reference orbit was reached on August 7th, 2014
- Satellite will be kept within an *Orbital Tube* around a *Reference Mission Orbit* (RMO)
- Specified *Orbital Tube* radius of 50 (rms)
- \Rightarrow equivalent to ground-track dead band of 60m
- During S-1A Commissioning: Relaxation of ground-track dead band to 120m
- ⇒ *Orbital Tube* radius of roughly 100 (rms)

48 InSAR product pairs

- 28 ascending geometry
- 20 descending geometry
- 46 in IW mode
- 2 in EW mode

Orbital InSAR baseline of *< 150m*

Along-track(burst) mis-synchronization*< 2.83ms*

Doppler centroid difference *< 20 Hz* stable attitude and antenna pointing

Common InSAR Doppler bandwidth *> 95%* of available azimuth bandwidth

-200 -150 -100 -50 ⁰ ⁵⁰ ¹⁰⁰ ¹⁵⁰ ²⁰⁰ -15

Azimuth frequency [Hz]

14

Demonstration of *Differential* and *Multi-Aperture (Squint)* SAR Interferometry

Image courtesy, DLR-IMF

M6.0 South Napa Valley earthquake on August 24th, 2014 Use of Stripmap (SM-1) data pairs acquired on August 7th and 31st, 2014

Image courtesy, Andrea Monti Guarnieri, POLIMI