

opernicus

Sentinel-1A Commissioning Phase

0

Dirk Geudtner¹, Nestor Yaguee Martinez², Pau Prats³, Andrea Monti Guarnier⁴ and Itziar Barat¹

¹ESA ESTEC
 ² DLR, Remote Sensing Technology Institute
 ³ DLR, Microwave and Radar Institute
 ⁴ Politecnico Di Milano

Sentinel-1 SAR Imaging Modes

• SAR Instrument provides 4 exclusive SAR modes with different resolution and coverage

- Polarisation schemes for *IW*, *EW* & *SM*:
 - $\checkmark\,$ single pol: HH or VV
 - ✓ dual pol: HH+HV or VV+VH
- Wave mode (WV): HH or VV
 - SAR duty cycle per orbit:

✓ up to 25 min in any imaging mode
✓ up to 74 min in Wave mode

Main mode of operations: Interferometric Wide Swath (IW) mode

^{5^{swath} satisfies most *Copernicus* service and user requirements for land & coastal monitoring (i.e. resolution, swath width, polarisation)}

Wave (WV) mode is continuously operated over open ocean

Sentinel-1 SAR TOPS Mode

- Antenna beam is steered along *azimuth* from *aft* to the *fore* at a constant rate
 - ✓All targets are observed by the entire azimuth antenna pattern *eliminating scalloping effect* in ScanSAR imagery
 - ✓ Constant SNR and azimuth ambiguities
 - ✓ Reduction of azimuth resolution due to decrease in dwell time
 - S-1 IW TOPS mode parameters: ±0.6° azimuth scanning at Pulse Repetition Interval rate with step size of 1.6 mdeg.

Sentinel-1A IW dual-pol image, acquired over Namibia

Sentinel-1 SAR System Calibration and Performance Verification

• Verification of in-orbit SAR system performance & monitoring of stability (temperature)

Internal Calibration

- Network of Cal pulses monitors potential drifts in the instrument's Tx & Rx signal paths + entire antenna system (T/R modules)
 - Monitoring of instrument stability over time & vs. temperature
 - Thermal system noise characterization
 - Inter-channel gain and phase characterization
 - Internal instrument delay characterization
 - TRM and EFE drift characterization based upon RFC mode

External Calibration

- Measurement of SAR system w.r.t. reference targets with known radar cross section (RCS)
- Absolute radiometric calibration (< 1 dB (3σ)) and stability (<0.5 dB (3σ)
- Antenna pointing calibration (< 0.01°)
- Antenna Model verification (0.2 dB (3σ) for 2-way gain)
- Geometric calibration (pixel localization: 2.5m (3σ))
- Interferometric verification
- Opelanicuestric calibration

Sentinel-1 Internal Calibration

- Network of Cal pulses monitors potential drifts in instrument's Tx and Rx signal paths except for:
 - Antenna radiators (covered by Antenna Model)
 - Calibration couplers and calibration paths (strict stability requirements)

TxCal (V) single-pol

RxCal dual-pol

Sentinel-1 Internal Calibration

- esa
- Each DT starts and ends with sequences of 6 types of Cal pulses both at nominal signal BW and at 100MHz BW (400 PRIs required):
- 4 PCC2 phase-coded pulses (RxCal, TxCal, EPDNCal, TACal)
- 2 non phase-coded (TxCalHIso, APDNCal)

 Cal pulses are used in ground processing for gain and phase, i.e. PG product correction

Product (complex) of Transmit power and Receive gain

Sentinel-1A Instrument stability during long datatakes

Variation over 25 min:				
Gain	0.31 dB (VV) 0.37 dB (VH)			
Phase	-13.6° (VV) -14.3° (VH)			

Variation over 21 min				
Gain	0.32 dB (VV) 0.43 dB (VH)			
Phase	-14.0° (VV) -14.7° (VH)			

Sentinel-1A Instrument stability over 5 months

- Variations in amplitude <0.6 dB in 150 days
- Discrete jumps in phase and internal delay occur when the SES is restarted
- Amplitude and phase variations are tracked by internal calibration and compensated for by the operational SAR processor (IPF)

Sentinel-1A Geometric Calibration

Measurement of Range-Doppler geolocation of known reference Point target in SAR image for estimation of systematic SAR timing offsets in:

- slant range (residual internal electronic path delay and Sample Window Start Time)
- azimuth (radar time and spacecraft GPS time)
- \Rightarrow Absolute Location Error (ALE) = predicted measured (PTs)

Geolocation accuracy may be affected by:

- Spacecraft position (orbital state vectors) accuracy
- Survey accuracy of reference target
- Atmospheric path delay of radar signal

Cross-hair prediction depends on orbit data type

Reference Point Targets (PTs)

- 4 corner reflectors (CRs) deployed at Torny-le-Grand, Switzerland
- 3 ESA transponders deployed in the Netherlands

Sentinel-1A Geometric Calibration

Data analyzed over *Torny-le-Grand* corner reflector site by University of Zurich, RSL

• 19 SM and 3 IW and use of Precise Orbit Data (POD)

Applied corrections:

- Internal path delay
- Tectonic motion
- Solid Earth tides motion
- Atmospheric path delay

	ALE Slant range offset		ALE Azimuth offset	
SM	$1.28\pm0.07~m$	8x10 ⁻⁹ sec	$2.09\pm0.49\ m$	$3.08x10^{-4} \pm 6.79x10^{-5} sec$
IW	1.31±0.37 m	8x10 ⁻⁹ sec	0.53±0.74 m	$7.7 \text{ x}10^{-5} \pm 1.1 \text{x}10^{-4} \text{ sec}$
	•			•

Recommendation: Annotate slant range time delay in SAR image data products

opernicu

Repeat-pass TOPS InSAR using Interferometric Wide Swath (IW) data pairs worked on the 'spot'

Provides ultimate verification of:

- SAR instrument phase stability (over repeat orbit cycles)
- Satellite on-board timing and GNSS solution to support position-tagged commanding (OPS angle)
- Accurate orbit control and maintenance (orbital tube)
- Mission Planning system using TOPS cycle time grid points for datatake start time estimation
- IPF produces phase-preserving Level-1 SLC product slices

Burst synchronization

Sentinel-1 Orbital Tube and InSAR Baseline

150

100

50

-50

-100

-150

-150

Basline paralel (Bs_p) [meters]

- Reference orbit was reached on August 7th, 2014
- Satellite will be kept within an Orbital Tube around a Reference Mission Orbit (RMO)
- Specified Orbital Tube radius of 50 (rms)
- \Rightarrow equivalent to ground-track dead band of 60m
- During S-1A Commissioning: Relaxation of ground-track dead band to 120m
- \Rightarrow Orbital Tube radius of roughly 100 (rms)

48 InSAR product pairs

- 28 ascending geometry
- 20 descending geometry
- 46 in IW mode
- 2 in EW mode

Orbital InSAR baseline of < 150m

Along-track(burst) mis-synchronization < 2.83ms

	Ascending	Descending
Mean AT mismatch [ms]	1.17	2.83
Stdev AT mismatch [ms]	1.71	1.97

Doppler centroid difference < 20 Hz stable attitude and antenna pointing

Common InSAR Doppler bandwidth > 95%

of available azimuth bandwidth

Demonstration of Differential and Multi-Aperture (Squint) SAR Interferometry

Image courtesy, DLR-IMF

M6.0 South Napa Valley earthquake on August 24th, 2014 Use of Stripmap (SM-1) data pairs acquired on August 7th and 31st, 2014

MAI (MS-InSAR)

Image courtesy, Andrea Monti Guarnieri, POLIMI