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Coregistration and Azimuth Shifts* 

*F. De Zan, P. Prats-Iraola, R. Scheiber, A. Rucci  
Interferometry with TOPS: coregistration and azimuth shifts 
EUSAR 2014, Berlin, Germany. 
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Impulse response and interferometric phase 

- Impulse response (zero-Doppler focusing geometry) 

𝑠𝑠 𝜏𝜏, 𝑡𝑡; 𝑟𝑟0 = 𝑠𝑠𝑟𝑟 𝜏𝜏 − 𝜏𝜏0  ∙  𝑠𝑠𝑎𝑎 𝑡𝑡 − 𝑡𝑡0 − 𝑘𝑘 ∙ 𝜏𝜏 − 𝜏𝜏0  ∙  exp −𝑗𝑗
4𝜋𝜋
𝜆𝜆
𝑟𝑟0  

∙  exp 𝑗𝑗𝑗𝜋𝜋𝑓𝑓0 ∙ cos𝛽𝛽 − 1 ∙ 𝜏𝜏 − 𝜏𝜏0  ∙  𝐞𝐞𝐞𝐞𝐞𝐞 𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒅𝒅𝒅𝒅 ∙ (𝒕𝒕 − 𝒕𝒕𝟎𝟎)   

 

- Interferometric phase for azimuth shifts 

- ∆𝜙𝜙 = 𝑗𝜋𝜋 ∙ 𝑓𝑓𝐷𝐷𝐷𝐷(𝑡𝑡) ∙ ∆𝑡𝑡 

- Variable Doppler centroid (TOPS) 

- Constant shift => azimuth phase ramp in each burst 

- Local shift => local phase contribution (bug or feature?) 

True range position of 
scatterer within resolution cell 
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One could estimate the azimuth shifts… 

- Phase error due to azimuth mis-registration (in presence of Doppler centroid) 

𝜎𝜎𝜑𝜑𝐴𝐴𝐴𝐴
2 ≈ 6

𝑓𝑓𝑑𝑑𝑑𝑑
𝐵𝐵𝑑𝑑

2 1 − 𝛾𝛾2

𝑁𝑁 𝛾𝛾2  

- Azimuth coregistration performance depends on coherence, samples and 
Doppler bandwidth 

- The phase error depends on Doppler centroid (and coregistration error) 
 
- Performance of (range) phase measurement, the well known CRB 

𝜎𝜎𝜑𝜑𝐼𝐼𝐼𝐼
2 ≈

1
𝑗   

1 − 𝛾𝛾2

𝑁𝑁 𝛾𝛾2  

 
- On the same resolution (same N) the coregistration-related term will always 

dominate in the TOPS case! (as soon as the Doppler centroid is comparable to 
the bandwidth) 
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Two cases: systematic shifts & geophysical shifts 

- Systematic shifts: 
- Orbital accuracy, timing errors, (Earth tides)* 
- Can be corrected to sub-centimetric accuracy 
 

- Geophysical shifts: 
- The effect on the phase should only be correctly interpreted 
- Users (and their models) should be aware 

♦M. Eineder et. al., “Imaging Geodesy – Toward Centimeter-Level Ranging Accuracy with TerraSAR-X,” IEEE Trans. 
on Geoscience and Remote Sensing, vol. 49, no. 2, Feb. 2011. 
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Systematic azimuth shifts 
- Systematic shifts: 

- Orbital accuracy, timing uncertainty 
- One single value for a long scene (tens of kilometers) 
- Lots of averaging opportunities 

- Many independent samples 
- Burst edges and overlaps (high sensitivity) 
- Elimination of outliers might be necessary 

 
- Sub-centimetric accuracy (for Sentinel-1, 20m azimuth resolution) 

- Coregistration accuracy 𝜎𝜎𝑥𝑥 = 3
2𝑁𝑁

1−𝛾𝛾2

(𝜋𝜋𝛾𝛾)2
𝜌𝜌𝑎𝑎𝑎𝑎 = 1cm @ 1000 km2(𝛾𝛾 = 0.𝑗5) 

- Resulting phase accuracy 𝜎𝜎𝜑𝜑 = 360 𝑓𝑓𝑑𝑑𝑑𝑑
𝑣𝑣
𝜎𝜎𝑥𝑥 = 3 deg (𝑓𝑓𝑑𝑑𝑑𝑑 = 6kHz, v=7000 

m/s)  
 

- Long wavelength signals in azimuth direction, e.g. Earth tides, will be absorbed 
in this correction (they end up in the shift information) 
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Geophysical shifts 

- It is not possible to compensate satisfactorily local shifts (at the scale of the 
interferometric product) 
 

- The correction is really an attempt to separate azimuth and zero-Doppler 
component for a slightly squinted geometry 

Δ 𝜙𝜙 =  𝑗 𝜋𝜋 ⋅  𝑓𝑓dc ⋅ Δ𝑡𝑡 = 𝑓𝑓dc =
𝑗𝑣𝑣
𝜆𝜆  sin 𝛽𝛽 =  

4𝜋𝜋
𝜆𝜆 ⋅ Δ𝑥𝑥 ⋅ sin𝛽𝛽 

- But is it necessary to go this way and correct for the azimuth LoS component? 
 

- It makes more sense to “accept” that TOPS has a varying line of sight! 
- In particular, the LoS vector experiences jumps 
- Azimuth phase jumps should be expected at burst edges 

- They simply reveal azimuth components of the motion, sensed by a 
sudden change in Doppler centroid 

 
 

∆𝑥𝑥 

∆𝑦𝑦
 

sin (𝛽𝛽) 

co
s
𝛽𝛽

 

𝛽𝛽 

∆𝑟𝑟 =  ∆x ∙ sin 𝛽𝛽 + ∆𝑦𝑦 ∙ cos (𝛽𝛽) 
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Variation of line of sight along azimuth 

- SAR interferometry is sensitive to motion in line of sight 
- Discontinuities in LoS are likely to appear in the interferogram 
- Jumps in the interferograms will be normal (small or large) 

burst #1 burst #2 burst #3 burst #4 
m

otion
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Example With TerraSAR-X Data 

glacier land glacier land 

azim
uth →
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 Phase Discontinuities over Pine Island Glacier 

azim
uth →
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Proposed methodology 

- Correct with Enhanced Spectral Diversity for a constant shift or slow varying 
term (geolocation/timing error) 

- Burst-periodic phase ramps should disappear 
- Optionally, assume global offset is small enough to be ignored (with precise 

orbits) 
 

- For phase variations or jumps due to local azimuth shifts 
- Models / users should be aware of the azimuth-varying line of sight 
- They should take care in phase unwrapping if the phase discontinuity is 

significant  
- Estimating the local azimuth shift, coregistering, unwrapping, 

reinserting the removed phase 
- Unwrapping each burst independently and solving for phase ambiguity, 

e.g. with the help of radargrammetry 
- Only large azimuth shifts will affect phase unwrapping: 75 cm (azimuth)  

180 deg phase jump. Earthquakes, glaciers… 
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Ionospheric Scintillations & TOPS 
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Ionospheric Scintillations and TOPS 

- Ionospheric scintillations are specially intense and frequent close to the 

equator, but also at higher latitudes. 

- Lower frequency bands are more affected. 

- They can introduce azimuth shifts locally up to decimeters at C-band. 

- For TOPS, the azimuth shifts will turn into phase jumps at burst edges. 

- In the following an example with Sentinel-1 data over Iceland is shown. 
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 Iceland 

18.11.2014 – 30.11.2014, Ascending azim
uth →
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 Iceland: Estimated azimuth offsets 

18.11.2014 – 30.11.2014, Ascending 

Scale +/-0.1 Samples 

TOPS can help better understand  
ionoshperic behaviour! 

(spatially and temporally) 

azim
uth →
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Speckle Tracking with TOPS Data* 

*R. Scheiber, M. Jäger, P. Prats-Iraola, F. De Zan, D. Geudtner  
Speckle Tracking and Interferometric Processing of TerraSAR-X TOPS Data for Mapping 
Nonstationary Scenarios 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, online, early access. 
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- Large azimuth offsets cause spectral decorrelation 

Δ𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠 =  
𝐾𝐾𝑎𝑎𝐾𝐾𝑟𝑟𝑟𝑟𝑠𝑠
𝐾𝐾𝑎𝑎 − 𝐾𝐾𝑟𝑟𝑟𝑟𝑠𝑠

Δaz/vg 
Δ𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠: Spectral shift 
𝐾𝐾𝑎𝑎: Target Doppler rate 

𝐾𝐾𝑟𝑟𝑟𝑟𝑠𝑠: Rotation rate (steering) 

Δaz: Azimuth displacement (metres) 
vg: Ground Velocity 

: Master Patch : Slave Patch

Common 
Bandwidth

Speckle Tracking with TOPS 

- Total decorrelation in Sentinel-1 for 1.3 km azimuth displacement (~100 az. samples). 
- Three step processing: estimate + filter + re-estimate 
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Time-series Evaluation – Temporal decorrelation 
Analysis with TerraSAR-X Data 

- Expectation: The larger the offset, the more coherence improves after 
coregistration. But… 

Glacier Velocity [pix/day] 
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Spectral decorrelation 
likely due to large 

acceleration or rotation 
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Timeseries Evaluation – Temporal decorrelation 
Analysis with TerraSAR-X Data 

- Feature tracking occurs where the correction of large offsets yields little 
coherence improvement: 

Glacier Velocity [pix/day] 
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Feature tracking 

Speckle tracking 
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- Implications for the azimuth common bandwidth filter: 

Glacier Velocity [pix/day] 
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CBW filter not 
necessary 

(offsets too small) 

CBW filter  
ineffective 

(decorrelation) 

Same investigations need to be 
performed at C-band! 

Timeseries Evaluation – Temporal decorrelation 
Analysis with TerraSAR-X Data 
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Role of the Orbital Tube 
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- Sentinel-1 is controlled to follow an orbital tube of 50 m radius. 

- The size of the tube can have a critical role in terms of azimuth spectral 

decorrelation and azimuth coregistration accuracy for the TOPS mode. 

- The baseline components can be described using the Clohessy-Wiltshire 

equations:  

Δ𝑥𝑥 𝑡𝑡 =  Δ𝑥𝑥0 + 𝑗 ⋅ 𝐴𝐴 ⋅ sin 𝜙𝜙𝑙𝑙𝑎𝑎𝑠𝑠 + 𝛼𝛼 ,   

Δ𝑦𝑦 𝑡𝑡 =  −𝐵𝐵 ⋅ cos 𝜙𝜙𝑙𝑙𝑎𝑎𝑠𝑠   ,   

Δ𝑧𝑧 𝑡𝑡 =  −𝐴𝐴 ⋅ cos 𝜙𝜙𝑙𝑙𝑎𝑎𝑠𝑠 + 𝛼𝛼     

 

 

The Orbital Tube 

Real Sentinel-1 Baseline 

Depends on difference between 
orbit eccentricities 

Depends on difference between 
inclination vectors 
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- Sentinel-1 can synchronize with very good accuracy at the beginning of the data 

take (2-3 ms std. dev.). 

- However, this does not guarantee perfect synchronization during the data take. 

Sentinel-1 can potentially acquire 25 minutes per orbit. 

- The along-track component of the baseline introduces azimuth spectral 

decorrelation, as the targets are observed under  a different squint angle due to 

TOPS scanning pattern. 

Burst Synchronization for Long Data Takes 
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Burst Synchronization for Long Data Takes 

Target observed under different Doppler centroids = Azimuth spectral decorrelation! 
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Burst Synchronization for Long Data Takes 

- Numerical evaluation using Sentinel-1 real orbits: 
 
 
 
 
 
 
 
 
 
 
 

- Observations: 
- For a 25 minutes data take (a quarter of orbit), up to 30 ms mis-synchronization at 

the end of the data  take ⇒ 15 % azimuth bandwidth (30% worst case in stacks!) 
- Drift depends on latitude: (±0.4 ms/deg). Worst case at equator. 

 
- Along-track component depends on radial tube dimension ⇒ Radius of radial tube, 𝐴𝐴, 

depends on difference between orbit eccentricities ⇒ Tighter orbit eccentricity control to 
mitigate effect (not necessariliy more maneuvers or fuel!) 
 
 
 
 

Synchronization 
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Burst Synchronization for Long Data Takes 

- Reduction of radial tube size implemented in Sentinel-1: 
 
 
 
 
 
 
 
 
 
 
 

Before 

After 
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- Geometric coregistration: use the external DEM to compute the offsets between image 
pairs (nominal coregistration), rather than estimate them from the data.  

- The non-parallel orbit increases the requirement in the DEM accuracy when it is used for 
coregistration*. 

 
         
 
 
 
 
 
 
 
 
 
Range:     Small orbital tube of S-1 (50m in diameter). No stringent requirement. 
Azimuth:   Small S-1 orbit crossing angles anticipated (0.001°worst case).  
 SRTM/ASTER DEMs sufficiently accurate! 
 
 

Crossing Angle – DEM Requirements for Coregistration 

*E. Sansosti, P. Berardino, M. Manunta, F. Serafino, G. Fornaro, “Geometrical SAR Image Registration,” IEEE Trans. 
on Geosci. and Remote Sens., vol. 44, no. 10, Oct. 2006. 
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Crossing Angle – DEM Requirements for Coregistration 

- Accurate computation of DEM requirement using Sentinel-1 orbits. 
- The larger the variation in across-track (𝐵𝐵 variable in the Clohessy-Wiltshire 

equations), the larger the crossing angle will be. 
- The plot on the right shows the azimuth coregistration error for different error 

heights (ranging from 300m to 3300 m) using real Sentinel-1 orbits. 
- Errors in the DEM up to 600m produce less than 3º phase error. DEM 

requirement proportional to cross-track dimension of tube. 
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Case Example: Mount Etna Example 
Difference of Slaves co-registered  
with and without DEM (reference = 0m) 

azimuth → 
 ra

ng
e 

Peak of Mount Etna ~ 9º error 

Observations:  
- No difference at sea level elevation 
- Linear ramp for topography offset 
- Bias at mountain peaks 
- Good coregistration accuracy even with  
large height deviations 

Orbit crossing angle: ~0.3 mdeg 

Bperp (per Sub-swath): 140.5 / 129.4 / 118.2 m 

Burst mis-sync: 3ms 
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