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Sentinel-1 IW processing with DORIS:
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DORIS open-source software

= Enabled interferometric applications in the last 15 years (ERS-1/2,
Envisat, Radarsat-1/2, ALOS, TerraSAR-X, Cosmo-Skymed)

e Implemented in C++
e Based on a modular structure
= Designed for single master-slave combinations

= Various users created a custom-made shell for stack processing
(in-house or open-source, e.g., STAMPS, ADORE)
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DORIS for Sentinel-1

Development in 3 stages:
1. Design and prototyping of new processing chain — ~DONE
2. Testing and evaluation of processing settings —

3. Final implementation — JUST STARTED
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DORIS for Sentinel-1

= Requires an integration module around the DORIS core to merge
the different bursts/sub-swaths

e DORIS core for processing on burst level
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DORIS for Sentinel-1 implementation

« Extension of the existing DORIS core to enable TOPS mode
o C++

* New modules (de-ramping spectrum, re-ramping spectrum, spectral
diversity)
» For processing on burst level

 Integration module around the DORIS core
* Python, using GDAL libraries
» Stack processing, merging of bursts/sub-swaths
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New processing flow

1. Reading of data

2. Deramping of spectrum

3. Coregistration

4. Resampling of slave

5. Reramping of spectrum

6. Computation of interferograms

/. Estimation of phase offset/azimuth shift on sub-swath/full-

swath level

8. Phase correction per burst

9. Merging of bursts/sub-swaths
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Data Reader

e Python, based on GDAL library

= Extraction of valid pixels
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Deramping/Reramping: Azimuth FM

raw

e Frequency modulation is the Doppler rate experienced by targets in
azimuth raw times. Second order model with range:

generalAnnotation/AzimuthFmRate/t0

2
KFM (tr ) =C, (tr — trREF ) +C, (tr — tFEF )_|_ Co generalAnnotation/AzimuthFmRate/cO
generalAnnotation/AzimuthFmRate/cl

generalAnnotation/AzimuthFmRate/c2

« Different from effective rate K,, in the focused image. Conversion from
raw time to focused time need to be performed



Doppler centroid retrieval

e Doppler centroid model
* t: two-way range time
e t.: azimuth focused time

1:DC (tr lta): 1:DRCEF (tr)+ KAZ (tr )(ta _t:EF)

dopplerCentroid/dcEstimate/AzimuthTime

FREF(t, ) =d, (t, —t7F  +d,(t, —t7F )+ d,

r

« Extract platform velocity v, from orbit
« Convert steering rate K, in Hz/s
2V, T
1 .7180

...Iproductinformation/azimuthSteeringRate

e Raw time -> Focused time

K K,
alt )=1- <) — K, (t )= )




Deramping

Results on Naples scene - Subswath 1, Burst 01
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Deramping

e Problem in f .5 polynomial -> residual spectral shift to be compensated

Current approach:
< A residual polynomial is estimated from the data according to:

FE7 (6)= (0 +ad, e, —t F (e, +ady e 1 )+ (@

KET(t,)=K,, +AK,, NECESSARY (at least for early S1 images)

OPTIONAL -> K,, from the annotation is accurate enough

e The deramping chirp is then computed as:

C(t,.t,)=exp(jz(KET (¢, )t, —t7F )+ £ (t, ), —t7=F))
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Deramping
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Reramping

= Multiplication by inverse chirp

= As resampling is performed on slave image as described by the range
and azimuth pixel warping functions/DEM-based offsets:

1:a — Fa(tr’ta)
1:r — |:r(tr’ta)

the chirp needs to be resampled accordingly, i.e.

C(t, t.)—> C(R,(t, t.) R (. t.))
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Coregistration

Four methodologies implemented:

1. Incoherent Cross-Correlation (ICC)
2. Coherent Cross-Correlation (CCC)
3. DEM-based coregistration

4. Spectral Diversity (in combination with one of the other
methodologies)
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Comparison of methodologies:
burSt |eve| Pixel shift Azjmuth

Diffference ICC point scatterers — ICC random points
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Comparison of methodologies:
burSt |eve| _Pixel shift Az_imuth.

Diffference CCC point scatterers — ICC point scatterers

imuth direction [-]
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Assessment of consistency:
burst overlaps

(1-degree polynomial)
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Consistency in coregistration

To preserve consistency in the sub-swath/full-swath:

= Single warp function per sub-swath

or

- DEM-based coregistration

“d
TUDelft 19
-




Spectral Diversity

Crriginal master intensity image [dB]
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Currently mean shift is taken. To be changed to pixel-based offsets.

3
TUDelft 20
e




Correction based on burst overlaps

= Currently sequential correction of bursts

* To be changed to integrated correction per sub-swath/full-swath

“d
TUDelft 21
-




Merging of bursts/sub-swaths

= Based on GDAL library

= Open question: what to do with burst overlap?
* Weighted average?
¢ Cut at middle of burst overlap?
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Conclusions

e Data with excellent coherence

 TOPS mode forces us to re-assess and improve our
coregistration procedures, which is also usefull for
other data

e Apart from the technical challenges, significant
software adaptions are required for the administration
(merging of bursts)

e Correction of azimuth shifts requires further
Improvement
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