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Measuring SST from space
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* Why Measure SST from Space?
How do we measure SST from Space?

 What can we see by measuring SST from Space?
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WHY MEASURE SST FROM SPACE?
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* Benjamin Franklin and Timothy
Folger - chart of North Atlantic
Currents - 1770
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We need to measure ocean surface temperature =

Pick up new
L4 SST

Use prescribed SST
| | »

Quality control

q

Assimilation

Forecast

IIII>

12

2 4th ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING
7-11 September 2015 | IFREMER | Brest, France
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e SST controls ocean atmosphere heat transfer

* More heat reaches the atmosphere from Earth’s
surface than from direct Solar Heating

* Ocean-atmosphere heat transfer drives our
weather and climate

* Also an important indicator of Climate Change

* Designated ECV by GCOS
— ECV = Essential Climate Variable
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 Ocean-atmosphere heat transfer - very strong T-
dependence of in Tropics — change of 0.3 °C can affect
rate by ~ 10% or more

* Process monitoring —e.g. el Nino is typically a 2 °C to 4°C
anomaly

— To monitor progress need to detect 10% of anomaly signal or
less.

— Thus there is a need for accuracy of 0.2 - 0.4 °C

e Climate monitoring requirements are more stringent,
with trends of around 0.1 °C per decade

— Various analyses require accuracies better than 0.2°C with
stability of better than 0.1 °C per decade
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P remer Modern in situ: drifting buoys

ECMWF Data Coverage (All obs DA) - BUOY
11/SEP/2010; 12 UTC
Barnacle-Encrusted Orifgirvql t}ur_v.y R‘;d}’;h}trw > Total number of obs =10417

after 621 Days at Sea

. 9960 DRIFTER 448 MOORED

o = 80E S0°E 120°E 150°E

LI TS, S -
m -‘55'323%&%5”@ 7
A '-".°. t..'€,° M—kr\j "

80N

o
4
S S
A
.
o
-

-
" 4 ' .
. . @ - .'
. . .
MY A0 ’| "d"o Sret . M.;.‘-.ﬁ"f
- [ S . o S| 2t e T . N
ale * * fme e : %:o % .o::" .' :. o': '..( \ . s
0 .
B I .}:"{ < :‘°'.:.'.;.' s .. L;m/ e A
4 NS | P L s SR DAL AT XY
SN i e W s, Tt . &
L P4 :4' . p ot .
o .

.
80°8

T =

2 4th ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

7-11 September 2015 | IFREMER | Brest, France




» l“‘h-‘ - — s o 2 5 vy i
- R - G T | ~ = -
» o = = g

(s

"fremer Theevolving marine surface temperature observing system\\\&\\g @SAa

o~
0 N
< N~
N —
~ c
c £
-
EC
59
® g
g
c g NS 5 &G
w9
Q o
©
PR
< n
-
" wn
S =
| gy WIS

9/-//

'l

Y

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Platforms

* The quantity, quality and location of observations over time depends on:
— Technology

— Platforms — from sailing ships to drifting buoys and satellites

— Civil engineering — the Suez and Panama Canals

— Conflict and economics — Wars, available platforms, budgets and priorities

— Psychology — high quality observations require committed observers/analysts
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e The three C’s ->

SST_CCI_L4 stdev from 19 yr climatology for July degC HadISST stdev from 19 yr climatology for July degC
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What is SST?

e SST is a variable function of time and space,
determined by integrated fluxes (including
insolation), turbulent mixing, and advection
(including upwelling).

e “SST” depends on how and where measured:

— Heat flux between ocean and atmosphere leads to a
skin layer at the ocean surface

— Absorption of insolation can lead to surface
gradients, especially in low winds.
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P amat Atmosphere/ocean interface: the skin effect K\\

A
4‘» :;:; art v = O, Infra-red emission
» -0 downward (sky & solar ) I-R radiation
(), sensible heat transfer

+Q,, Latent heat flux (evaporation - condensation)

Solar short

. Surface heat is lost to the atmosphere directly and by radiation.
wave radiation

Solar short-wave heating penetrates below the surface.
Thus heat flows upwards to the surface to feed the heat flux Q.

A thermal gradient is required to drive heat
across the molecular conduction layer M W l

. . .
,f turbulence reducing i '~1-2 mm

Restricted heat transfer towards the surface.

Skin temperature Turbulent heat transfer ~ Fully turbulent layer

_deviation &
1

T kin T

S sub-skin
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iurnal variability
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HOW DO WE MEASURE SST FROM
SPACE?
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* We need two things:
— A high-performance radiometer in Space
— An effective Atmospheric Correction

* Orbits

 Radiometry

 Atmospheric Corrections

* Microwave or Infrared wavelengths
 Example SST sensors

2 4th ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING
7-11 September 2015 | IFREMER | Brest, France



i~~~ N "‘-.s,:;,l' = i:‘",>,’ -

mmer Two main types of orbit for remote sensing |

e

* Geostationary orbits

— For an orbital period of
one sidereal day (7= 23.93
hours), the satellite travels

with the earth.

— This requires r =42290 km,
h =35910 km.

— The satellite remains over
the equator.

* Near-polar orbits

— Tis approximately 100
min.

— His 700 to 1000 km.
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Night -

Ascending
— Day - descending orbit orbit

Challenge: Find the mistake!
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ATSR Mission MLST
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Note: AATSR has had 30 minutes added to each time
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Spectral radiant exitance, M, (Wm=2 um~")

L Spectral D|str|but|on of Energy Radlated
from Blackbodies at Various Temperatures

Blackbody radiation curve
at the sun’s temperature

Blackbody radiation curve
at incandescent lamp temperature

2000° K
1000° K
500°K Blackbody radiation curve

at the earth’s temperature
300°K

/ 200°K '\

1 2 50 100
Wavelength (/.Lm)
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Atmosphericinteractions with'r {cesa

Attenuated / signal Noise

® Absorbed by
the atmosphere

Emittea\by thes

Signal = emitted

radiation
AVAVAVAVAVAVAVAVAVAVAVAWV
¢ for sea water is about 0.99 so Reflectance is ( 1-E ) which is very
the water-leaving signal is almost small, so solar reflection is negligible
the black body radiation. at 11 microns.
Thermal emission is approximately Thermal emission by the atmosphere
Lambertian, but it may be affected is the greatest source of atmospheric
by surface foam and films. noise.
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Earth emitted spectra overlaid on Planck function envelopes

High resolution atmospheric absorption spectrum
and comparative blackbody curves.
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Wavelength {um)
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Infra-red observations

Spatial resolution: 1 to 10 km

Single pixel precision: 0.15 to
0.5K

Accuracy (bias): <0.1 K to few
tenths

Limitations: cloud cover

Temporal resolution per
sensor (not accounting for

clouds): sub-hourly (geo), ~
twice-daily (polar)

Linear Radiometric Sensitivity
Since 1981

satellite SSTs ata glanc

Passive microwave observations

Spatial resolution: 50 to 100 km
Single pixel precision: 0.5 K
Accuracy (bias): few tenths

Limitations: rain, 50 km margin
around land and ice, radio
frequency interference

Temporal resolution per sensor
(not accounting for
contaminants): ~ twice daily

High Radiometric Sensitivity (T°> —
T15)
Since 1997
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* We need to know:
 What we are looking at (field of view)

* At what wavelengths we are looking (spectral
response)

How much radiant power are we receiving
(radiometric calibration)
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Scene radiance at T(K) is a linear function of the measured signal

= GainC + Offset

scene scene

Using Signals from Hot and Cold Blackbodies we can obtain Gain and Offset

Gain = ( Lhot'Lcold)/ (Chot'Ccold) and
Offset = (Lyo:CeoiaLeotdChot/ (LhorLcord)

L,,.andL_,,are the blackbody radiances derived using the Planck function from the
measured blackbody temperatures and emissivities.

L=¢P(T,,) + (1-)P(T, ) and

P(T) = JR(l)2hc?/(A*exp(hc/IkT)-1)dl

In practice we use look-up tables to convert from temperature to radiance and vice
versa.
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Designed in 1960 s to see the motion of clouds
» World’ s first general-access Earth imager
* Telescope to define FoV
* Filters to define spectral response of detectors

* Single temperature reference target plus a space
view to define radiometric standards
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Example of space borne radlometer ATSR Q esa
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 ATSR — Along-Track Scanning Radiometer
— ASTR on ERS-1
— ATSR-2 on ERS-2
— AATSR (Advanced ATSR) on Envisat

* Only spacecraft radiometer optimised for SST
measurements
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| ATSR IR Calibration

Blackbodies viewed
every scan.
1

e 2-point scheme covering the range of
ex e Cted SST Scan Direction 7
p / Nadir View \ 7 s /I

— Cold bb ~300K
Hot bb ~256K (floating at optics
temperature)

* High Emissivity >0.999

e Precision Thermometry
— 5 baseplate sensors
Calibration traceable to ITS-90

* llluminates the full optical chain. .
S I
M ke
e Calibration system does not involve ﬂ R I
the use of ‘special’ modes, A T
mechanisms or additional optics. (-~ i |
I ===

jl_.__; B
TEMPERATURE MULTI- LAYER
SENSORS THERMAL BLANKET

VEN'I
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An ATSR
on-board
Black
Body

Peering
into the
Void - How
Black is
Black?
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Before correction
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A smgle orblt record of AVHRR Black-body temperature
passing the terminator

Ifremer

o 550 20 2
> =
5 4 5
8 450 / ﬂ%‘ e 18
2 | :Q;g \M* 2 i
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0 1500 3000 4500 6000 7506 9000 10,500 12,000
SCAN LINE :

Fig. 6. Time series plot of observed PRT temperature for one orbit on NOAA 7. These data, were taken on 6ctober 2,
1984, starting at 1732 UT. Numbers 1-4 identify temperatures for PRT’s 1-4; temperature values are indicated on the
right ordinate. Numbers 5, 6, 7 identify backscan counts for channels 3, 4, 5, respectlvely, count values are indicated on the
left ordinate.
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AATSR Black-body Terﬂpera
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P s s

ture records showing variations overone day

with near-sinusoidal orbital variations superimposed
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(Max = 28.750000, min = 28.278000, mean = 28.558486)
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Pltremer Along Track Scannmg Radlometersﬁ ‘\\\\

. AATSR
* Series of three _instrumene
* Dual view
* Two-point high-quality Sub-atelit

black-body calibration
e Low noise detectors

e Accurately
characterised spectral )
responses Fight /

direction
Forward view swath
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Satellite track /‘{K

Forward view has twice
the atmospheric path
length of the
nadir view

Nadir view has the
shortest path through
the atmosphere

Atmosphere
g T Y o e e T e et T Nt T Nyt

Ocean surface
Different views of the same patch of sea (separated in time by ~3.5 min.) through
different thicknesses of atmosphere will differ by an amount which depends upon
the total effect of the atmosphere on the radiance reaching the satellite.

Improved atmospheric correction algorithms use two views (multi-angle) as well
as multi-spectral information
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SEVIRI spectral image

1 =VIS0.6 2=VIS0.8 3=NIR1.6

4=IR3.9
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Intérpreting imagery (1)

Example

of the
appearance
of 1 km
imagery,
with SST
thermal
features
and
intervening
scattered
and major
cloud

Brightness
Temp. / K

3.7 um
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Interﬁreting imagery (2) *

Successfully
cloud
masked
image
(same
scene,
different
wavelength)
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Mltremer loud Detection = very important = (<
Sensor and NWP data and
noise. errors.

Forward
Model and

Imagery errors. Cloud Mask
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T Forecast error due to cloud contamination

Incorrect cold anomaly
arising from erroneous
cloud screening.

o AATSR shows a
large swath of
~cloud in this
region.

4K OSTIA K AATSR 10.8 um BT

ECMWEF Forecast - 26/07/11: Northerly winds blowing over the anomaly
affected weather in the UK.

*Cloud detection is fundamental to weather and climate applications.
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lfremer Sp"t wmdow SST-eguation

SST =T, +m(T,, ~T,,) +c¢

Anding and Kauth, 1970 (83 citations)

A procedure 1s derived for obtaining improved estimates of water surface temperature
by ... simultaneous radiometric measurements in two wavelength intervals ... to
approximately £0.15°C.
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SST retrleval approach (1) ‘\\\_

— \\\\\\\\\

BTs,y

Least squares

SSTs, x regi'ession

\/

Coefficients, a

Empirical approach: a
regression to in situ -{J= aO + a

channels, ¢
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SCECMWF Bls, y Least squares .

\
. _~—""|regression

Radiative Transfer SSTs. x
| [

Coefficients, a

Physics based
approach gives

independent SST: H
feasible since ~2000 = aO + E acyc

channels, ¢
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Progress.in SST retrieval

Retrieval Cloud detection Uncertainty model
Empirical Empirical screening | |[Empirical (SSES)
regression to buoys | |thresholds
Regression to RT Fixed RT screening
modelling thresholds
Optimal estimation | |Probabilistic / Uncertainty
of SST & TCWV dynamic RT model
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WHAT CAN WE SEE BY MEASURING
SST FROM SPACE?
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ms for measuring SST

Polar-orbiting Polar-orbiting

infra-red radiometer microwave
C—— radiometer
* —

drifting or
moored buoy

research
vessel
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MODIS-
Aqua

tAMSR-E i

Windsat
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“Level 3” — regularly gridded, perhaps averaged,
single sensor
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* Gap free
(interpolated) and
probably derived
from multiple

SENSOIrS

180

-

— |l.e., from several
L2 and/or L3 data
streams
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Indeﬁé&hdeﬁt cfs‘fvhgéfison of ARC with HadSST3-

Ifremer

0.6

SST Anomaly (°C, wrt 1961-90)

—— ATSR series e
—— HadSST3

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Year
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Stablllty assessment of ARC SSTs ' &“““‘ @sa

=

* Assessed de-seasonalised discrepancy between ARC

SST, ., and Global Tropical Moored Buoy Array (GTMBA)
for trends (Dave Berry, NOCS)

Region Period Time of day Trend / 95% conf. int./
mK yr! mK yr!

Tropics 1993 - end 2.6 <trend < |.5
Tropics 1993 - end Night 1.0 -1.4 <trend <34
1993 2010
— L III
e - Daytime i
g3
23
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SUMMARY
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What- have you Iearned (1) € esa

Measuring SST is important
— Small-term changes for NWP
— Long-term changes for climate

e Space offers a unique vantage

— The three C’s

— Using multiple orbits and wavelengths is beneficial
* The basics of radiometry

— The importance of instrument characterisation

— Calibration (ideally two on-board two black bodies)
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What- have you Iearned (2) & o esa

Retrieving SST from radiances
— Accounting for clouds and other atmospheric effects

Merging all complementary SST measurements
provides an optimal solution

— L4 daily analyses
* SSTis not a single parameter

— Accounting for differences in measurement types is
critical

2 4th ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING
7-11 September 2015 | IFREMER | Brest, France



\\\m

\

e

 Thank you for your
attention

 For further information
please contact

— Gary Corlett, University
of Leicester,

gkcl@le.ac.uk

— GHRSST Project
Coordinator,

gpc@ghrsst.org
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