

→ POLINSAR 2015

What can polarimetric SAR data tell us about snow accumulation on polar ice sheets?

S. Linow¹, W. Dierking¹, W. Rack² ¹Alfred Wegener Institute for Polar and Marine Research ²Gateway Antarctica, Center for Antarctic Studies and Research, University of Canterbury, New Zealand

26-30 January 2015 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

Ice sheet mass balance

Spatial scales

- SAR data: 6 Radarsat-2 FQP scenes, 18 TSX scenes (HH+VV) along Kottas Traverse
- 543 point measurements of snow accumulation + ECMWF temperature and wind

Accumulation rate retrieval

- SAR is sensitive to accumulation rates up to \approx 250 kg/(m² · yr) – roughly 90% of Antarctica
- large scatter in σ⁰ values not only due to SAR speckle – geophysical reasons?

Polar firn in SAR images

→ POLINSAR 2015 26-30 January 2015 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

Firn-microwave interaction

→ POLINSAR 2015 26-30 January 2015 | ESA-ESRIN | Frascati (Rome), Italy

Anisotropy

- σ⁰ approximately follows accumulation rate, but differences in asc. / desc. orbits
- surface contribution?

- phase difference $\neq 0$
- anisotropy in firn microstructure?

Evolution of polar firm

Image from: Kaempfer and Schneebeli, JGR 112, 2007

Firn anisotropy

CT firn anisotropy at Hercules Dome

Hörhold et al., 2009:

- microstructure shows anisotropy
- anisotropy depends on duration of exposure to large temperature gradients
- low accumulation = large anisotropy

Data from Hörhold et al., J.Glaciol., 55, 2009

Surface features

... are shaped by the wind

Images: a) NASA, b) Birnbaum et al., J. Glaciol., 56, 2010, c) A. Light, d) S. Tronstad, NPI

Wind / deposition

- small snow particles
- (relatively) low accumulation
- no sastrugi
- large snow particles
- vertical anisotropy
- (relatively) high accumulation

a surface roughness model:

From Ashcraft & Long, J. Glac., Vol. 52, No. 177, 2006

quantification of different roughness scales?

Local topography

 correlation between topography and observed parameters σ⁰ and phase difference

• surface contribution: orientation of surface structures from azimuthal modulation of σ^0

Summary

Current model assumptions	SAR observations	Field observations	Model changes
SAR backscatter from the volume only	σ ⁰ depends on orbit direction (ascending ≠ descending)	sastrugi / dunes (wind and surface slope)	include surface / interface contribution
spherical scatterers	phase differences between HH and VV	anisotropy in firn microstructure (temperature gradient, accumulation rate)	different description of microstructure

Outlook

- accumulation rate retrieval from SAR data can be improved
- complex deposition processes caused by wind need more focus
- consider grain size anisotropy / microstructure description in models